

Available online at www.sciencedirect.com

ScienceDirect

Procedia Procedia

Energy Procedia 63 (2014) 765 - 772

GHGT-12

Membrane stripping technology for CO₂ desorption from CO₂-rich absorbents with low energy consumption

Zhen Wang^a, Mengxiang Fang^{a,*}, Qinhui Ma^a, Zhun Zhao^b, Tao Wang^a, Zhongyang Luo^a

^aState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China ^bChinese American Chemical Society, Houston, TX, 77054, USA

Abstract

 CO_2 membrane stripping is a novel method for CO_2 desorption at low temperature (around 348K) for amine-based CO_2 capture, which has the potential to reduce regeneration energy requirement. In this work, we investigated CO_2 membrane stripping with two different commercial hollow fiber membranes, polypropylene (PP) and Polyvinylidene fluoride (PVDF). CO_2 membrane stripping in PVDF membrane showed a faster CO_2 desorption rate than in PP membrane, but PP membrane presented a better stability on long-term running. Energy consumption for CO_2 membrane stripping with 20 wt% MEA solvent was evaluated. Compared with conventional thermal regeneration, 28% energy can be saved if regeneration pressure of CO_2 membrane stripping operated at 20 kPa.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Peer-review under responsibility of the Organizing Committee of GHGT-12

Keywords: CO2; Membrane stripping; Absorbent; Desorption; Energy consumption;

1. Introduction

Fossil fuel combustion in power generation and industrial sectors is considered as the largest stationary source of CO₂ emission, which accounts for 60% of global CO₂ emission [1,2]. At present, solvent based post-combustion capture (PCC) technology, which typically separates CO₂ from flue gas in packing columns, is believed to be one of the most mature technologies [3,4]. Nevertheless, the main challenge for this technology is its energy-intensive stripper for rich-solvent regeneration. Significant amounts of heat for rich-solvent regeneration are required, with reducing the power plant efficiency by as much as 30% [5]. Therefore, it has been proposed to develop novel

^{*} Corresponding author. Tel.: +86-571-8795-2803; fax: +86-8795-1616. *E-mail address*: mxfang@zju.edu.cn

regeneration technology with lower energy consumption in recent years.

Hollow fiber membrane contactors were proposed as a promising separation unit than conventional packed columns for CO₂ separation [6,7]. Therefore, membrane stripping technology, which has the potential to reduce energy requirement of CO₂ separation, is a novel method for CO₂ desorption [8-11]. In this process, CO₂ is desorbed in a hollow fiber membrane contactor instead of packed column. The regeneration temperature, which is usually around 353K, is much lower than conventional thermal regeneration temperature. Kosaraju et al. [8] firstly demonstrated the feasibility of CO₂ membrane stripping using commercial PP membrane contactors by long term running for 55 days. Fang et al. [12] further studied CO₂ membrane stripping comprehensively with using monoethanolamine (MEA) as absorbent. Besides MEA absorbent, Wang et. al. [13,14] screened the different amine-based absorbent for CO₂ membrane stripping process.

In this work, we studied the CO₂ membrane stripping with two different commercial hollow fiber membranes, polypropylene (PP) and Polyvinylidene fluoride (PVDF). The effects of membrane materials on CO₂ membrane stripping performance were compared by investigating their regeneration efficiencies, CO₂ desorption rates and long-term stabilities. In addition, to evaluate the advantages of membrane stripping technology, energy consumption for CO₂ membrane stripping with 20 wt% MEA solvent was estimated.

2. Experimental

2.1. Materials

The MEA absorbent (purity > 99%) we used in this work were provided by Sinopharm Company. The pure CO_2 gas (purity > 99.9%), provided by Hangzhou Jingong Gas Co., Ltd., was used to prepare the CO_2 loaded solvent by introducing to the fresh solvent in a bubbling reactor. The CO_2 -loading of solutions can be determined by the standard method described in our previous work [12].

The hydrophobic micro-porous polypropylene (PP) and Polyvinylidene fluoride (PVDF) hollow fiber membrane modules were provided by the Zheda Kaihua Membrane Technology Co., Ltd. and Tianjin Fengke Membrane Technology Co., Ltd., respectively. The detail specification of the membrane modules is listed in Table 1. It should be noted that for PP membrane, we used two identical membrane modules by connecting each other in series.

Parameters	Unit	PVDF	PP
Fiber I.D.	μm	700	344
Fiber O.D.	μm	1000	424
Thickness of membrane wall	μm	150	40
Porosity	/	85%	45%
Average micropore size	μm	0.16	0.1
Active length of module	cm	40	26×2
Module O.D./I.D.	cm	2.5/2.2	2.4/2
NO. of fibers	/	130	500
Contact area	m^2	0.068 m^2	$0.14 \times 2 \text{ m}^2$

Table 1 Specifications of PP and PVDF hollow fibers and membrane module

2.2. Apparatus and procedure

The experimental setup of CO₂-rich solution by using membrane stripping technology is shown in Fig. 1. The prepared CO₂-rich solution was added into the rich-solvent tank, and then heated to desired temperature before membrane module. After pre-heating, CO₂ rich solution was continuously pumped into the tube side of the hollow fiber membrane contactor by a peristaltic pump. Liquid flow rate was controlled by adjusting the rotation speed of the peristaltic pump, the liquid phase temperatures and pressures are both metered in inlet and outlet of membrane module. Low-temperature water steam coming from the steam generator flowed through the shell side of the

Download English Version:

https://daneshyari.com/en/article/1510706

Download Persian Version:

https://daneshyari.com/article/1510706

<u>Daneshyari.com</u>