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We describe a new mathematical method for finding very diverged short tandem repeats containing a
single indel. The method involves comparison of two frequency matrices: a first matrix for a subsequence
before shift and a second one for a subsequence after it. A measure of comparison is based on matrix
similarity. The approach developed was applied to analysis of the genomes of Caenorhabditis elegans,
Drosophila melanogaster and Saccharomyces cerevisiae. They were investigated regarding the presence of
tandem repeats having repeat length equal to 2 - 11 nucleotides except equal to 3, 6 and 9 nucleotides.

g?&vgergience A number of phase shift regions for these genomes was approximately 2.2 x 104, 1.5 x 10* and 1.7 x 102,
Reading frame respectively. Type I error was less than 5%. The mean length of fuzzy periodicity and phase shift regions
Frameshift was about 220 nucleotides.

The regions of fuzzy periodicity having single insertion or deletion occupy substantial parts of the
genomes: 5%, 3% and 0.3%, respectively. Only less than 10% of these regions have been detected previously.
That is, the number of such regions in the genomes of C. elegans, D. melanogaster and S. cerevisiae is
dramatically higher than it has been revealed by any known methods. We suppose that some found
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regions of fuzzy periodicity could be the regions for protein binding.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fast development of sequencing methods led to a rapid accumu-
lation of DNA sequences from genomes of various organisms (Liu
etal.,, 2012; Xuan et al., 2012). Consequently, it gave rise to investi-
gations of biological functions of DNA sequences and development
of new mathematical methods for biological sequence analysis. It
is essential to understand sequence properties and associate them
with biological functions.

Effective mathematical methods have been developed to search
for short tandem repeats including mini- and microsatellites
(Gulcher, 2012; Merkel and Gemmell, 2008; Weber, 1990). Mini-
and microsatellites play a key role in genome evolution by provid-
ing increased recombination rate (Myers et al., 2008; Richard and
Paques, 2000; Usdin, 2008). They are also related to many genetic
diseases (Batra et al., 2010; Puri and Manku, 2010) and are sup-
posed to be involved in adaptive evolution (Despons et al., 2011;
Gemayel et al., 2010). From a practical standpoint, they are useful
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in genotyping and personal identification (Guichoux et al., 2011;
Manasatienkij and Ra-ngabpai, 2012).

Many mathematical methods and algorithms for finding short
tandem repeats have been developed in the last decade (Lim et al.,
2013). Efficiency of tandem repeat detection depends on the sen-
sitivity of these methods. Under sensitivity we mean the ability
to detect highly diverged tandem repeats including mini- and
microsatellites which have accumulated many point mutations.
The methods for detecting short tandem repeats can be roughly
divided into two classes (Merkel and Gemmell, 2008). The first class
includes the methods that detect tandem repeats by using similar-
ity between single periods within analyzed sequence. The second
one consists of the methods that use spectral approaches for sig-
nal processing. The methods of the first class can efficiently detect
periodicity with indels. However, they require all single periods in
a sequence to have high similarity with each other. Usually this is
related to the fact that a weight matrix for symbol pairs is used
to estimate similarity between periods. So these methods may fail
to find tandem repeats if similarity between single periods is low
or absent. The methods of the first class are used in such pro-
grams as RepeatMasker (Chen, 2004), RECON (Bao and Eddy, 2002),
REPuter (Kurtz et al., 2001), mreps (Kolpakov et al., 2003), Tallymer
(Kurtz et al., 2008), TRF (Benson, 1999) and some other programs.
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The methods of the second class can reveal fuzzy periodicity hav-
ing dissimilar single periods with some limitations. The methods
of the second class are discrete Fourier transform, other spectral
approaches (Leclercq et al., 2007; Saha et al., 2008; Sharma et al.,
2004; Sussillo et al., 2004; Zhou et al., 2009) and the method of
information decomposition (Korotkov et al., 2003a, 2003b).

Thus a gap appears to exist in current methods for finding tan-
dem repeats (including mini- and microsatellites). Quite likely,
there exist significantly more tandem repeats than are known cur-
rently. This gap is due to the fact that current methods cannot detect
ancient tandem repeats that have accumulated large amount of
both substitutions and indels.

Our objective is to develop a mathematical approach that will
be able to find satellites in a case when both similarity between
periods is low and the indels are present (fuzzy periodicity). The
information decomposition method for finding periodicity in sym-
bolic sequences was suggested earlier (Korotkov et al., 2003a,
2003b). This method is able to find periodicity in nucleotide or
amino acid sequences containing large number of substitutions.
Therefore, there is no statistically significant similarity between
individual periods, but there is similarity for a set of more than
two periods. Dynamic programming and many other algorith-
mic approaches usually cannot reveal fuzzy periodicity because
they compare periods pairwise. Statistical significance of similarity
between any two periods of fuzzy periodicity can be very low.

Spectral approaches such as Fourier or wavelet transform have
several weaknesses for the detection of fuzzy periodicity. First, this
is due to the fact that the spectral approaches can't find the peri-
odicity in presence of indels. Second, periods with a length greater
than the size of a sequence alphabet are represented incorrectly in
the resulting spectral density (Korotkov et al., 2003a). For instance,
the intensity of DNA periods those are four or more symbols long
“spreads” into shorter periods. This drawback is also observed for
amino acid sequences when period length is greater than 20. More-
over, it can also be significant for short periods if such periods
contain the same amino acid in more than two positions (Korotkov
et al., 2003a, 2003b).

The information decomposition method allows to find fuzzy
periodicity in various genes and amino acid sequences (Korotkov
et al., 1997, 1999) and to classify the periodicity types observed
(Frenkel and Korotkov, 2008; Shelenkov et al., 2006). It was
also found that fuzzy periodicity with a period length about
10-12 nucleotides was present in promoter sequences. Such
periodicity may correspond to DNA bend near promoter region
(Shelenkov and Korotkov, 2009). Further development of the infor-
mation decomposition method was aimed to improve detection
of fuzzy periodicity containing indels. The first step was to detect
frameshifts in fuzzy triplet periodicity, i.e., to reveal fuzzy peri-
odicity containing a single indel (Korotkov and Korotkova, 2010;
Korotkova et al., 2011). This approach has shown that bacterial
genomes contain about 4% of genes having frameshift mutations.
These results almost do not include sequencing errors because the
analyzed bacterial genomes have been sequenced dozens of times.
At the same time, eukaryotic genomes contain over 9% of genes
having frameshifts though some of these cases can be related to
intron and exon identification errors.

In this paper we significantly modified this algorithm to reveal
highly diverged tandem repeats containing single indel. We devel-
oped a new mathematical measure of similarity between frequency
matrices. This measure was used to search for fuzzy tandem repeats
in the genomes of Caenorhabditis elegans, Drosophila melanogaster
and Saccharomyces cerevisiae by evaluating various period lengths
from 2 to 11 bp. Detection of indel was modeled as detection of
a phase shift in periodicity (Korotkov and Korotkova, 2010). The
results show that there is considerably larger number of mini-
and microsatellites in these genomes than were revealed earlier

by other methods. Furthermore, a greater part of these genomes
can be related to highly diverged tandem repeats.

2. Methods

2.1. The method for finding phase shifts between the periods of
different length

2.1.1. Method description

Let S=s(1),s(2), ..., S(I), Vk =1,1: sk € D be a sequence, where
L is a length of the sequence S and D={q, t, c, g} is its alphabet.
d(1)=a,d(2)=t,d(3)=c, d(4)=g. To search for tandem repeats (n is
the length of a period) we take two segments of the same length [
(I is divisible by n) in the sequence S to the left and to the right of
some positionxin S. x changes from[+1to L — [+ 1 with a step equal
to n. The first segment lies to the left of position x, and it is located
from x; to xo, where x; =x — land x, =x — 1. The second segment lies
to the right of the position x and it is located from x3 to x4, where
X3=X,Xg=X+[—-1.

Let us introduce the indicator function for each element s(k)
of the sequence S as: Fi(s(k))=1 if s(k)=d(i) and Fi(s(k))=0 if
s(k) # d(i). Then we calculate a matrix V=(i, j) for a subsequence
from x; to x,, where i varies from 1 to 4, j varies from 1 to n.
v(i,j) = Z Fi(s(k)) for such k from x to x, that function A(k, xq,n)=j.
The function A(k, x1, n)=(k —x; +1)modn if (k—x; +1)modn # 0
and A(k, x1, n)=n if (k —x; + 1)modn =0. For k from x; to x, we can
calculate function A(k, x1, n) and obtain a sequence of resulting val-
ues1,2,...,n,1,2,...,n,...,1,2,...,A(xz, X1, n) for k from x; to
X. Thus an element 1(i, j) shows how many times we found a base
d(i) from the alphabet D in position j of a period. (Korotkov et al.,
2003a, 2003b).

Then we calculate in a same way the matrices Wj(x3, x4) for
a subsequence from x3 to x4 as we did for V. w(i,j) = ZFi(s(k))
for such k from x3 to x4 that function B(k, x3, n, t)=j. The function
B(k, x3, n, t)=(k — x3 +t)modn if (k — x5 + t)modn +# 0 and B(k, x3, 1,
t)=n if (k—x3 +t)modn=0. Here t varies from 1 to n. A function
Fi(s(k)) is calculated in a same way as above: Fi(s(k))=1 if s(k)=d(i)
and Fi(s(k))=0 if s(k) # d(i). For k from x3 to x4 we can calculate
function B(k, x3, n, t) and obtain a sequence of resulting values ¢,
ean 1,2, ..,n, ..., 1,2, ..., B(xg4, X3, 1, t) for k from x3 to x4.
Matrices Wi(x3, x4) for t=2, 3, ..., n are equal to matrix W1 (x3, x4)
cyclically shifted by t — 1 rows. Thus t — 1 represents a phase shift
between the matrices Wy (x3, x4) and W¢(x3, x4).

For a subsequence from x; to x, we calculate one matrix V(x1,x>),
while for a segment from x3 to x4 we calculate n matrices W¢(xs3, x4),
t=1,2, ..., n. Next we compare the matrix V(x1, x,) to the matrices
Wi(x3,X4), t=1,2, ..., n using the similarity measure shown in Sec-
tion 2.1.2. If there is an insertion of t — 1 nucleotides in a sequence
at coordinate x and the subsequence from x; to x4 contains tan-
dem repeats, then the matrix V(x1, x) will be similar to the matrix
Wi(x3, X4), but not to Wy(x3, x4). Otherwise the matrix V(xq, x3)
will be similar to the matrix Wy (x3, X4). No similarity between the
matrices V(xq, x) and Wi(x3, X4), t=1,2, ..., n are observed in the
absence of periodicity between x; and x4.

Matrix similarity ensures detection of tandem repeats in a sub-
sequence from x; to x4. We can check whether this subsequence has
an insertion or not by finding out which of the matrices W¢(x3, x4),
t=1,2, ..., nis the most similar to V(x1, x2). When there is no such
similarity for all values of t, we can conclude that there are no tan-
dem repeats (for a given period length n) in a subsequence from x;
to x4. If the maximum similarity was found for t=1, then sequence
contains tandem repeats in a segment from x; to x4 with no indels
near x. Maximal similarity for t>1 shows that the sequence ana-
lyzed contains tandem repeats in a segment from x; to x4 with
insertion of t — 1 bases (or deletion of n —t+ 1 bases) near x.
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