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a b s t r a c t

A CIS (common insertion site) indicates a genome region that is hit more frequently by retroviral insertions
than expected by chance. Such a region is strongly related to cancer gene loci, which leads to the detection
of cancer genes. An algorithm for detecting CISs should satisfy the following: (1) it does not require any
prior knowledge of underlying insertion distribution; (2) it can resolve the insertion biases caused by
hotspots; (3) it can detect CISs of any biological width; (4) it can identify noises resulting from statistic
mistakes and non-CIS insertions; and (5) it can identify the widths of CISs as accurately as possible. We
develop a method to resolve these difficulties. We verify a region’s significance from two perspectives:
distribution width and distribution depth. The former indicates how many insertions in a region while
the latter evaluates the insertion distribution across the tumors in a region. We compare our method
with kernel density estimation and sliding window on the simulated data, showing that our method not
only identifies cancer-related insertions effectively, but also filters noises correctly. The experiments on
the real data show that taking insertion distribution into account can highlight significant CISs. We detect
53 novel CISs, some of which have been proven correct by the biological literature.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mutagenesis resulting from retroviral insertion (Oja et al., 2007)
is one of main causes of carcinogenesis (Uren et al., 2008; Mikkers
and Berns, 2003; Lewinski et al., 2006). By infection, retroviruses
insert their own DNA into the host cell’s genome, which could lead
to gene mutation of the host cell. The gene, which is close to or
includes the location in which the retrovirus inserts, may be altered.
If this gene is an oncogene or tumor suppressor gene (Liu et al.,
2009; Tran et al., 2008), such mutation leads to the proliferation
of cells without control. Finally, a tumor could develop (Miething
et al., 2007; Suzuki et al., 2006; Slape et al., 2007).

The process of tumor development actually involves multi-
genes and stages. In this process, the tumor tissues with the
retroviral insertions are copied many times while those without
the retro viral insertions might be copied a few times. As a result,
research on tumor tissue can find genome regions in which there
are many retroviral insertions. Therefore, the genes corresponding
to these regions are very probably associated with carcinogene-
sis. A region is called CIS (common insertion site) if it meets two
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criteria: (1) it includes more insertions than can be expected by
chance; and (2) the insertions are distributed across multiple inde-
pendent tumors. Based on the definition and features of CISs, CIS
detection should resolve the following challenges:

(1) Insertion distribution: There is no evidence demonstrating that
retroviral insertions conform to any known distribution. So, a
CIS detection algorithm with a known underlying distribution
may not be able to identify real CISs.

(2) Insertion biases: The biological experiments show that retro-
viral insertions are not absolutely random. Some insertions
favor distinct genes or loci, called hotspots (Nielsen et al., 2005;
Hematti et al., 2004; Wu et al., 2003). For example, 25% of MLV
integration is detected near transcription start sites (Lewinski
et al., 2006). A hotspot related to a CIS, which also leads to
gene alteration, is always detected near the genes that they
impact, therefore it is important that CIS detection should be
not based on any underlying distribution because an assumed
distribution may filter useful hotspots.

(3) Biological variance: A CIS could impact multiple genes that are
far from or close to it. In turn, a gene could be impacted by mul-
tiple CISs. So far, the only thing which can be confirmed is that
there is no a fixed CIS width available for any biological envi-
ronment. So, when detecting CISs, the algorithm should provide
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Fig. 1. Taking TP/FP as the only criterion in CIS detection. The black line represents
a part of a tumor. The rectangles indicate the real CISs. The broken lines represent
the CIS boundaries identified by algorithms 1 and 2. According to TP/FP, 1 and 2
perform the same because both can find the real CIS in sub-figure A. However, it is
obvious that algorithm 1 is much better than 2 because the CIS from it is closer to
the real CIS. In sub-figure B, 2 is considered effective because it can detect two real
CISs without FPs. But we believe it is not satisfying because it combines two CISs
together, which will lead to a misunderstanding of gene functions.

for candidate genes coming from any biologically relevant CIS
width.

(4) The identification of noises: Noises in a CIS dataset can be divided
into two categories: statistical errors and non-CIS insertions. If a
noise, which we call noise I, is either a statistical error or a non-
CIS insertion that happens in the later stage of tumorigenesis, it
should be filtered. If a noise, which we call noise II, is a non-CIS
insertion that happens in the early stage of tumorigenesis, it
will be copied many times on the same tumor. Therefore, it can
become a false CIS, which should be identified.

(5) The detection of CIS boundaries: Although the exact detection
of CIS boundaries is still impossible, identifying CIS boundaries
as much as possible is very important for understanding CIS
functions and gene features. Taking TP/FP (True Positive/False
Positive) as the only criterion cannot effectively identify CIS
boundaries, as shown in Fig. 1. From the point of view of data
mining, identifying boundaries indicates that the algorithm can
match the original data exactly. So, a CIS detection algorithm
should be able to match the dataset maximally. In other words,
it can correctly classify as many insertions as possible.

A large volume of literature identifies CISs by assuming to inte-
grate all the insertions on tumors into one long genome, as shown
in Fig. 2A and B (Ridder et al., 2006; Akagi et al., 2004; An et al.,
2005; Mikkers et al., 2002; Suzuki et al., 2002; Zhang et al., 2005;
Pyrz et al., 2010). In A, retroviral insertions distribute across five
tumors. For detecting CISs, all of them are integrated into one long
genome to identify the regions in which there are many more inser-
tions than others. These regions are considered to be CISs, so the
genes which are close to or include them are potentially cancer
related. The significance of CISs is determined by the number of
insertions (Akagi et al., 2004). So CIS 2 and 3 in (B) are significant.

According to this thinking, the Sliding window (Akagi et al.,
2004) uses sliding window to construct a fixed range (30k for 2
insertions, 50k for 3 insertions, 100k for 4 or more insertions).
This method does not require a pre-defined parameter and is inde-
pendent of insertion distribution. But it does not provide enough
analysis about CIS width and insertion biases. When the size of the
data is not very big, Monte Carlo simulation (Suzuki et al., 2002)
and Poisson distribution (Mikkers et al., 2002) can perform very
well. But these methods do not take noise and insertion biases
into consideration (Nielsen et al., 2005; Hematti et al., 2004; Wu
et al., 2003). The kernel framework resolves the first three chal-
lenges effectively (Ridder et al., 2006; Uren et al., 2008). It is not only
independent of insertion distribution, it can also identify hotspots
by smoothing the difference between insertions. Simultaneously,
the window width can employ any CIS width which is biologi-
cally meaningful. So, it can also analyze CIS with distinct biological
variances.

However, all these methods only focus on situation 1 being a sig-
nificant CIS. They do not take insertion distribution across tumors
into account. In addition, they do not consider challenges 4 and 5.
First, they do not have a method to filter noise I. Second, they can
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Fig. 2. Schematic view of insertion distribution across tumors, using a traditional
CIS exploration algorithm and DNSD. (A) A random insertion distribution across
five tumors. The diamonds, stars and ellipses are CIS-related insertions. The first
triangle indicates noise I, the second three triangles in interval 4 indicate a false
CIS caused by noise II. Intervals 1–3 between the broken lines indicate 3 real CISs.
(B) Traditional CIS identification strategy. All the insertions are integrated into one
assumed genome. The intervals between the broken lines are detected CISs. The
curves indicate how many insertions in CISs. The CIS with more insertions has a
higher curve. (C) DNSD introduction. Distribution Width (DW) refers to the number
of insertions in CIS. Distribution depth (DD) shows how insertions distribute across
tumors. The four rectangles indicate DD × DW. A CIS with a large rectangle is more
important than the others. Interval 4 is filtered as a false positive.

not find false CISs caused by noise II because they ignore insertion
distribution. Last, they take TP/FP as the only criterion, which fails
to identify CIS boundaries. Based on the above analysis, we have
developed a method, called DNSD (DBScan and normal standard
deviation), to meet all five challenges. A stochastic review of this
method is shown in Fig. 2A and C.

We consider a region to be a CIS based on two criteria: dis-
tribution width (DW) and distribution depth (DD). Firstly, DW is
evaluated, which indicates the number of insertions in a region.
It meets criterion 1 of being a CIS, which is consistent with the
current CIS detection algorithms. DD, that is for criterion 2, eval-
uates the distribution of the insertions across the tumors. DBScan
is used for calculating DW and filtering noise I (Stefanakis, 2007;
Parimala et al., 2011). DBScan is a density-based clustering algo-
rithm, which does not need any pre-distribution knowledge. It can
filter noise I while detecting CISs. Due to its goal, that is, to clus-
ter insertions correctly, it can identify CIS boundaries maximally.
In addition, its parameter (Eps) can meet any CIS width which
is significant biologically. When detecting CISs by DBScan, all the
insertions related to cancer genes are divided into core insertions
and border insertions. Core insertions indicate those in CISs. Bor-
der insertions represent hotspots. So DBScan can resolve the issue
of insertion biases. Secondly, based on standard deviation, we have
developed NSD (normal standard deviation) to calculate DW to ana-
lyze how the insertions are distributed across tumors. To further
our research step-by-step, we use tumor types instead of tumors
in this paper. NSD overcomes two drawbacks of standard deviation
in CIS detection: (1) standard deviation cannot compare two CIS
involving different tumor types; and (2) standard deviation cannot
compare two CISs with different insertion quantities. Due to the
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