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a  b  s  t  r  a  c  t

Sequence  subgrouping  for a given  sequence  set  can enable  various  informative  tasks  such  as  the  func-
tional  discrimination  of  sequence  subsets  and the  functional  inference  of  unknown  sequences.  Because
an  identity  threshold  for sequence  subgrouping  may  vary  according  to the  given  sequence  set,  it  is highly
desirable  to  construct  a robust  subgrouping  algorithm  which  automatically  identifies  an  optimal  identity
threshold  and  generates  subgroups  for a given  sequence  set.  To  meet  this  end,  an  automatic  sequence  sub-
grouping  method,  named  ‘Subgrouping  Automata’  was  constructed.  Firstly,  tree  analysis  module  analyzes
the structure  of tree  and  calculates  the all possible  subgroups  in  each  node.  Sequence  similarity  analysis
module  calculates  average  sequence  similarity  for  all subgroups  in  each  node.  Representative  sequence
generation  module  finds  a representative  sequence  using  profile  analysis  and  self-scoring  for  each  sub-
group.  For  all  nodes,  average  sequence  similarities  are  calculated  and  ‘Subgrouping  Automata’  searches  a
node  showing  statistically  maximum  sequence  similarity  increase  using  Student’s  t-value.  A  node  show-
ing  the  maximum  t-value,  which  gives  the most  significant  differences  in  average  sequence  similarity
between  two  adjacent  nodes,  is  determined  as an  optimum  subgrouping  node  in  the phylogenetic  tree.
Further  analysis  showed  that  the optimum  subgrouping  node  from  SA prevents  under-subgrouping  and
over-subgrouping.

© 2013 Published by Elsevier Ltd.

1. Introduction

The generation of subgroups containing functionally relevant
sequences based on sequence similarity or identity can give good
information for functional discrimination of sequences in a given
set of sequences (Heger and Holm, 2000). Through clustering or
subgrouping, functions of anonymous protein sequences can be
easily inferred from the functions of other sequences in the same
cluster (or subgroup) or the sequences in neighbor subgroups.
A homologous sequence set for clustering can be prepared by
text mining or several search methods such as BLAST (Altschul
et al., 1990) or profile analysis (Altschul et al., 1997; Eddy, 1998).
When we assume that the functions of homologous proteins are
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diversified along time owing to point mutation, deletion, inser-
tion, multimerization and duplication, the function of the collected
anonymous sequences in a given sequence set can be predicted
more in detail by the functional inference based on phylogenomic
analysis method (Eisen, 1998). When the functions of the several
members in all subgroups in the phylogenetic tree are revealed
by experiments, we can roughly identify the function of anony-
mous sequences in a given sequence set. Then the next remaining
question is how we can make functionally meaningful subgroups
from large set of sequences (Eisen, 1998; Eisen and Fraser, 2003;
Krause et al., 2002). As summarized by Lee et al. (2010), devel-
oped algorithms can be categorized into three main types, i.e.
phylogenomics, pattern recognition and clustering. According to
Lee et al., SCI-PHY, which utilize pattern recognition and clus-
tering, gives better results in protein function prediction than
sequence-only methods such as Secator (Wicker et al., 2001),
Ncut (Abascal and Valencia, 2002) and CD-HIT (Li and Godzik,
2006). However, these methods need conserved domains (for
pattern recognition) or pre-determined sequence identity cut-off
(for clustering). Some methods use mathematical models. Brown
introduced model-based sequence clustering method utilizing
Dirichlet process (Brown, 2008). This method is reported to show
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good group purity and VI score, which divides the given sequence
set into functionally different subgroups. However, according to
Andreopoulos et al. (2009), most models used in model-based
clustering methods are often oversimplified, so that leading to inac-
curate result. In addition, another disadvantage of model-based
method is slow processing time for large sequence sets.

From the standpoint of enzymologists, bioinformatical meth-
ods should be feasible regardless of the level of input sequence
set. Input sequence set could consist of sequences in super-
family, family or subfamily level. If the sequence set consists
of superfamily level, sequences may  be very diverse to draw
conserved domains. In addition, sequence identity cut-off for
sequence subgrouping could be never known for sequence set col-
lected from database by utilizing any homology search method.
Therefore, sequence clustering algorithm should produce fam-
ily or subfamily sequence sets from superfamily or family-level
sequence set without prior knowledge of sequence identity cut-
off.

In this work, we designed a versatile algorithm for sub-
classification of input sequence set, which uses sequence
comparison and clustering method. Because there are many out-
performing sequence alignment methods, we focused on the
development of algorithm to generate subgroups utilizing the
sequence alignment result produced from other multiple sequence
alignment methods.

2. Materials and methods

2.1. Data set

Sequences of �-alanine:pyruvate aminotransferase, �-
aminobutyrate aminotransferase, l-ornithine aminotransferase
and lysine decarboxylase were searched with EC number and
retrieved from BRENDA. Redundant sequences were removed
by sequence clustering with 100% threshold using CD-HIT. 97
sequences of �-alanine:pyruvate aminotransferase, 272 sequences
of �-aminobutyrate aminotransferase, 72 sequences of l-ornithine
aminotransferase and 111 sequences of lysine decarboxylase were
used for subgrouping.

In the case of branched-chain aminotransferase (bcAT),
sequences of bcATs were searched using the EC number of bcAT
(2.6.1.42) at RefSeq database in NCBI. Putative sequences and
fragment sequences were removed from the search result. To
remove the redundant sequences, sequence clustering with the
sequence identity threshold of 100% was performed using CD-
HIT. A total of 691 sequences were gathered. The sequence
subgrouping using the developed subgrouping algorithm was  per-
formed for the final 691 sequences. For aspartate ammonia-lyase,
sequence sets were searched with EC number, and retrieved
from BRENDA. Redundant sequences were removed by sequence
clustering with 100% threshold using CD-HIT. HMM  profile was
built using ‘hmmbuild’ and ‘hmmcalibrate’ program in HMMER
package. 843 microbial genomes (as of March 2009) were
searched using the generated profile. From the result of the
search for each microbial genome, hit sequences scoring over
default E-value of 10 were collected. Sequence clustering was
performed to remove redundant sequences using CD-HIT with
100% threshold. Final 379 sequences were used for subgroup-
ing.

In the case of (S)-2-aminoadipate semialdehyde dehydroge-
nase (aasDH) sequence sets, there are two kinds of sequences in
BRENDA database. The sequences of approximately 400 amino
acids were chosen, but the number of the sequences was too
small. Therefore, simple BLASTP search was performed with aasDH
from Stenotrophomonas sp. SKA14 in NCBI and top 100 sequences

were retrieved. Redundant sequences were removed by sequence
clustering with 100% threshold using CD-HIT. Final 99 sequences
were remained and used for subgrouping.

The sequences for the subgrouping analysis of aminotrans-
ferase group I, II and all the other aminotransferase groups were
manually collected from the NR database. Putative sequences and
fragment sequences were manually removed. BcAT sequences were
re-collected manually with the same method for sequences of
other aminotransferase subgroups. Sequence set of all aminotrans-
ferases consists of 11 sequences of alanine aminotransferase, 152
sequences of aspartate aminotransferase, 39 sequences of aromatic
aminotransferase, 22 sequences of histidinol-phosphate amino-
transferase, 16 sequences of �-aminotransferase, 10 sequences of
l-ornithine aminotransferase, 55 sequences of N-acetyl-l-ornithine
aminotransferase, 129 sequences of 7,8-diaminopelargonate
aminotransferase, 48 sequences of �-aminobutyrate aminotrans-
ferase, 10 sequences of d-alanine aminotransferase, 53 sequences
of branched-chain aminotransferase, 22 sequences of phospho-
serine aminotransferase and 50 sequences of serine aminotrans-
ferase. Aminotransferase group I consists of alanine aminotrans-
ferase, aspartate aminotransferase, aromatic aminotransferase and
histidinol-phosphate aminotransferase. Aminotransferase group
II consists of �-aminotransferase, l-ornithine aminotransferase,
N-acetyl-l-ornithine aminotransferase, 7,8-diaminopelargonate
aminotransferase and �-aminobutyrate aminotransferase. Classifi-
cation of aminotransferase in the work of Mehta et al. (Mehta et al.,
1993) was adopted.

2.2. Algorithm and used programs

ClustalW 1.83 (Thompson et al., 1994) was used for the mul-
tiple alignment of input sequence sets. In this work, we  used
ClustalW because some input sequence sets have large number of
sequences. Although we  used ClustalW for multiple sequence align-
ment, any alignment programs can be used to generate multiple
sequence alignment. “hmmbuild”, “hmmcalibrate” and “hmm-
search” in HMMER  package (Eddy, 1998) were used for profile
building and profile search. Subgrouping algorithm and parsing
algorithm for the result of ClustalW and programs in HMMER
package were coded using Python programming language.

Two  assumptions were made to construct the algorithm. (1) If
sequence sets consist of a certain level (e.g. family level), subgroup-
ing should be performed to discriminate sub-level (e.g. subfamily
level); (2) at the optimum subgrouping node in phylogenetic tree,
an average sequence similarity shows a maximum increase. Pro-
gram starts with the ‘PHYLIP’ format of the tree and ‘clustal’ format
of the alignment result. Therefore, if a user can make these two
files, any alignment program can be used. In phylogenetic tree
recognition and analysis, node number is calculated from ‘PHYLIP’
format of the phylogenetic tree. Starting from node index of zero,
+1 is added when an opening parenthesis appears and −1 is added
when a closing parenthesis appears. Therefore, the origin of the
rooted tree is designated as node 1. After the node number assign-
ment, the subgroup at node i is picked by selecting sequences
between an opening parenthesis with node number (i + 1) and a
closing parenthesis with node number i. The node number and the
subgroup tag for each sequence can be assigned as in Fig. 1(a).
For example, because node number of tree origin is 1, subgroup-
ing at node 1 results in one subgroup and it contains all the
sequences.

Next, subgroups at each node were identified. For instance,
three subgroups can be identified at node 2 and four subgroups
at node 3 (Fig. 1(a)). Therefore, sequence a in Fig. 1(a) can have
the multiple subgroup tags of 3-1, 4-2 and so on. For sequences
in each subgroup, to calculate the average sequence similarity,
pairwise sequence similarities were calculated for all the sequence
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