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Recognition  of  protein  fold  types  is an  important  step  in protein  structure  and  function  predictions  and
is  also  an  important  method  in protein  sequence-structure  research.  Protein  fold  type  reflects  the  topo-
logical  pattern  of  the structure’s  core.  Now there  are  three  methods  of protein  structure  prediction,
comparative  modeling,  fold  recognition  and  de  novo  prediction.  Since  comparative  modeling  is limited
by  sequence  similarity  and there  is  too  much  workload  in  de  novo  prediction,  fold  recognition  has  the
greatest  potential.  In  order  to improve  recognition  accuracy,  a recognition  method  based  on functional
domain  composition  is  proposed  in  this  paper.  This  article  focuses  on  the  124  fold  types  which  have  more
than  2  samples  in LIFCA  database.  We  apply  the  functional  domain  composition  to  predict  the  fold  types
of a protein  or a  domain.  In order  to evaluate  our  method  and its sensibility  to  the  samples  involving
SCOP  family  divided,  we tested  our  results  from  different  aspects.  The  average  sensitivity,  specificity  and
Matthew’s  correlation  coefficient  (MCC)  of  the  124  fold  types  were  found  to be  94.58%,  99.96%  and  0.91,
respectively.  Our results  indicate  that  the functional  domain  composition  method  is  a  very  promising
method  for  protein  fold  recognition.  And  though  based  on simple  classification  rules,  LIFCA  database  can
grasp the  functional  features  of different  proteins,  reflecting  the  corresponding  relation  between  protein
structure  and  function.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Research of protein 3D structures plays a key role in molecular
biology, cell biology, biomedicine, and drug design (Burley, 2000).
With the technological improvements in protein crystal structure
determination, especially in diversified structure determination
methods, experimental determination could be carried out at a
much faster speed. However, experimental determination still can-
not keep pace with increasing protein sequences. Therefore, it is
important to develop new methods to predict the 3D structure from
amino acid sequences in the post-genome era. Currently, there are
three methods of protein structure prediction: comparative model-
ing, fold recognition, and de novo prediction (Baker and Sali, 2001).
Given that comparative modeling is limited by sequence similarity
and there is too much workload in de novo prediction, fold recog-
nition has the greatest potential in predicting protein structures.

Classification of protein fold type is a fundamental precondition
in fold recognition. However, the prevailing classification database,
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such as SCOP (Murzin et al., 1995; Lo Conte et al., 2002) and CATH
(Orengo et al., 1997; Pearl et al., 2005), have different classifications
(Novotny et al., 2004; Matsuda et al., 2003) and are not constructed
for fold recognition (Chen and Crippen, 2006). Thus, it is important
to build a protein fold type database with a uniform principle for
fold recognition research.

Achievements in fold recognition studies overseas have been
reported. The fold recognition methods can be classified into the
following three categories; based sequence (Dubchak et al., 1995,
1999; Ding and Dubchak, 2001; Shi et al., 2006; Jain et al., 2009),
based structure (Marsolo, 2005; Marsolo and Parthasarathy, 2006),
and fusion method of sequence and structure (Shi and Zhang, 2009;
Shen and Chou, 2009; Gewehr et al., 2007; Ying et al., 2009). The
methods are all based on the classification of SCOP, and involve
less fold type. The 27 fold types of Ding are widely used. Support
Vector Machines (SVM) was  used to recognize the 27 fold types by
Ding with a best success rate of 56.0% (Ding and Dubchak, 2001).
Shi et al. used the SVM Fusion Network to predict fold types with
an average accuracy of 61.04% (Shi et al., 2006), and they also used
the image feature method, got an average accuracy of 71.95% (Shi
and Zhang, 2009). Shen and Chou predicted the protein fold pat-
tern with functional domain and sequential evolution information
with a success rate of 70.5% for the 27 fold types (Shen and Chou,
2009). Liu et al. predicted the protein fold types by the general
form of Chou’s pseudo amino acid composition for the 27 fold types
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and obtained better identification results than most of the previous
reported results (Liu et al., 2012). Ying et al. used a novel data inte-
gration approach to enhanced protein fold recognition for the 27
fold types and got a better result, the MKLdiv-dc method improved
the fold discrimination accuracy to 75.19% (Ying et al., 2009). These
researches play a key role in the method test, involving lesser sam-
ples in the database. In general, low accuracy was achieved for the
fold recognition, based on small test sets.

Recently, some reports about large test sets for fold recogni-
tion achieved better results (Jain et al., 2009; Gewehr et al., 2007).
Gewehr et al. used unique pattern-class mappings to make an auto-
mated prediction of SCOP classifications, where in the fold level, the
average sensitivity was 93.36% and specificity was 98.13% (Gewehr
et al., 2007). Jain et al. used supervised machine learning algorithms
for protein structure classification based on SCOP classifications
and found that the average sensitivities were 0.98, 0.75, 0.90, and
0.97 for the level of class, fold type, superfamily, and family, respec-
tively (Jain et al., 2009).

Based on the purpose of build a protein fold type database with
a uniform principle for fold recognition research, in earlier studies,
a protein fold type database – LIFCA (low identical protein fold core
structures and annotation) with a uniform principle according to
the topological connection and spatial arrangement of secondary
structure segments (�-Helix and �-Sheet) for protein folding type
recognition was built (Luo and Li, 2000; Liu et al., 2008; Zhang et al.,
2008), and good results have been achieved for the recognition of
Globin-like fold (Ren et al., 2007) and another 36 large samples fold
(Liu et al., 2009), here we defined the critical number is 4. The aver-
age sensitivity, specificity, and Matthew’s correlation coefficient
(MCC) of the 36 fold types were found to be 90.36%, 99.99% and 0.95,
respectively. Results revealed that the HMM  can be built for the less
sampled fold type using the structure alignment tool together with
manual inspection. The larger sample fold types which cannot be
built with uniform HMM  should be divided into subgroups so that
the HMM can be built (Liu et al., 2009).

Recently, the functional domain composition method was
widely used in bioinformatics, such as subcellular localization
(Chou and Cai, 2004a), prediction of peptidase category (Xu et al.,
2008), and protein structure class prediction (Chou and Cai, 2004b).
Given that one protein or domain can contain one or more func-
tional domains, and in general proteins which belong to the same
fold type have similar functions, the functional domain composi-
tion method can also be used in fold recognition. In the present
study, based on the purpose to test the new functional domain
composition method in protein fold recognition, and also to test
the classification of LIFCA which built in simple rules, we used this
method in the chosen 124 fold types from LIFCA.

2. Materials and methods

2.1. Train set

With the principle of the topology invariance of protein struc-
ture’ core, LIFCA database was built according to the topological
connection and spatial arrangement of secondary structure seg-
ments. It contains 2406 proteins with less than 25% sequence
identity, and there are 259 fold types. Compared with the SCOP
database, LIFCA merged some SCOP families into one LIFCA fold,
and also divided some SCOP families into different LIFCA folds.

A total of 124 fold types, which have more than 2 sequence
samples were extracted from LIFCA. After removing the proteins
without Pfam domain information, a training set with 2240 sam-
ples was obtained, covering 827 SCOP families. A total of 38 families
were divided based on the LIFCA database.

2.2. Test set

To evaluate the current method and it is sensibility to the
samples involving divided SCOP family, the current experimental
results were tested from different aspects. A total of 9211 proteins
with less than 95% sequence identity from the Astral 1.65 database
were chosen as set A. The current method was also evaluated in a
test set B, which excludes the duplicated proteins with the training
set, and the proteins other than the 124 folds from the test set A,
containing 2319 proteins, and 236 proteins involving divided SCOP
families.

2.3. Method

The protein functional domain method was used as a predictor.
First, the functional domains of the proteins in the training set were
drawn by querying the Pfam database. As a result, the whole train-
ing set covers 1235 Pfam functional domains (Finn et al., 2006).
Thus, each fold type and protein can be represented in the form of
a 1235 dimension vector with each of the 1235 functional domains
as the vector base. The feature vector Fi for a given fold type and the
target vector P for a protein can be explicitly formulated as follows:

Fi =

⎡
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· · ·
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where aij, bi =
{

1, hit found
0, otherwise

.

The similarity between P and Fi is described as follows:

∧ (P, Fi) = P · Fi

||P|| · ||Fi||
(i = 1. . .124)

where P · Fi is the dot product of P and Fi, ||P|| and ||Fi|| are their
modules. Obviously, if P belongs to Fi, the similarity between them
is highest. Accordingly, the predictor can be formulated as follows:

∧(P, Fk) = Max{∧(P, F1), ∧(P, F2), ..., ∧(P, FN)}

If the similarity between P and Fk is the highest, P is predicted
to belong to Fk.

2.4. Parameter estimation

The accuracy of the recognition results was  estimated using Q,
sensitivity, specificity, and MCC:

Q =
c∑

i=1

pi

N

Sensitivity: Sn = tp

tp+fn
× 100%

Specificity: Sp = tn
tn+fp

× 100%

MCC  = (tp × tn) − (fp × fn)√
(tp + fn) × (tn + fp) × (tp + fp) × (tn + fn)

tp: true positive; tn: true negative; fp: false positive; fn: false neg-
ative.
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