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a b s t r a c t

Semi-empirical equations of state based on Lindemann's law have been developed to determine the
pressure (P) dependence of the melting temperature (Tm) of Li, K, Rb and Cs. The basic inputs are Grü-
neisen parameter and the bulk modulus. Tm–P variations exhibit maximum melting temperature with
concave downwards. The maximum in Tm for Cs is found to occur at pressure of 2.2 GPa whereas for Li, K
and Rb it falls in the range of 7–9.5 GPa. The predicted values of Tm as a function of pressure, based on the
present empirical relation, fit quite well with the available experimental data. The empirical relation can
also be used to extrapolate Tm at higher pressure from the values available at lower pressures.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Alkali metals (Li, Na, K, Rb and Cs) are highly reactive and have
large number of industrial applications, including alkalides and
biological roles as electrolytes. These fall under the category of low
melting temperature metals varying in the range 301.59 K (Cs) to
453.69 K (Li) at ambient conditions. It is of great interest to in-
vestigate the effect of high pressure on the melting curve. The
general character of the melting phenomenon at lower pressure is
the same as for other substances i.e. melting curve rises with in-
creasing pressure but the behavior at higher pressure is not well
understood.

Recent experimental results for Na and Li [1,2] suggest that at
lower pressure, Tm increases with P and then decreases with in-
creasing pressure exhibiting a maximum for Tm–P variation. In the
present work we investigate the characteristics of melting curves of
Li, K, Rb and Cs as a function of pressure and examine the maxima
and the critical point of the curves. The comparative study of the
behavior of these metals under pressure has special significance
because the effects of pressure on these metals are excessively large,
for example, Cs is by far the most compressible solid element. The
energy density on compressions becomes comparable to the bonding
energies resulting in significant changes in the electronic states,
chemical bonding and the packing of condensed phases. Alkali me-
tals are found [3–6] to transform at high pressure into structurally
complex and poorly conducting states as a result of changes in the
electronic structure due to s–p or s–d hybridization. Several authors
[7–9] have experimentally determined the bcc–fcc transitions in Rb, K
and Cs at higher pressure.

We used here an empirical approach based on Lindemann
criterion of melting to determine Tm as a function of pressure. Such
an approach has been successfully applied to different class of
materials [10–12]. The basic inputs are the Grüneisen parameter
(ξ) and the bulk modulus (B). ξ and B have been expanded here in
terms of pressure which allows us to obtain analytical relation for
Tm in terms of pressure. The computed results are in very good
agreement with the available experimental data [2,13]. We ob-
serve that Tm–P variation of all the alkali metals exhibits maximum
at a pressure around which the bcc–fcc transformation occurs.
Section 2 covers the formulation for obtaining the analytical re-
lations for Tm as a function of P. The computed values of the results
are given and discussed in Section 3 which is followed by con-
clusion in Section 4.

2. Formalism

2.1. Melting temperature in terms of bulk modulus (B) and Grünei-
sen parameter (ξ)

The present empirical method is based on Lindemann's melting
law which has been extended by expressing the bulk modulus, B
and the Grüneisen parameter, ξ as a function of pressure. Grü-
neisen parameter is a property of materials that establishes a link
between thermal behavior and the elastic response to thermally
induced stress of the material. It measures the anharmonic inter-
actions and is of considerable interest for theoretical and experi-
mental studies of materials whereas the bulk modulus determines
the ability of the materials to undergo compression.

It was proposed by Lindemann [14] that the amplitude of the
lattice vibrations increases with increasing temperature and that
melting occurs when the amplitude of vibrations reaches a critical
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fraction, ym, of the mean atomic radius Ra. Lindemann's original
formula, in association with the approximate expression of Mott
and Jones [15] for the mean square amplitude of vibration of each
atom, can be written in the form:
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whereΘD is the Debye temperature, Ra is the atomic radius and M
is the atomic mass. The variation ofΘD with atomic volume can be
expressed in terms of Grüneisen parameter
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On replacing Ra¼(3M/4πρ)1/3 and M in Eq. (1), carrying out
some algebra with the help of Eq. (2) one gets an expression for
pressure variation of Tm in terms of bulk modulus, B and Grünei-
sen parameter, ξ [10,11]

⎛
⎝⎜

⎞
⎠⎟

( )
ξ= −

( )
d ln T

dP B
2 1

3 3
m

where = Ω( )∂
∂Ω

B P
T is the bulk modulus of the material. B and ξ in

Eq. (3) are pressure dependent.

2.1.1. Linear dependence of B and ξ on pressure
For want of better analytical expression, we have considered

pressure variation of ξ and B in terms of linear equations of the
form

ξ ξ( )= + ( )P a P 40 1

and

( )= + ( )B P B b P 50 1

ξ0 and B0 are the bulk modulus and the Grüneisen parameter at
zero pressure. a1 and b1 are the 1st derivatives of Grüneisen
parameter and the bulk modulus respectively. Without going into
derivation of the equation, which can be found in [10–12], Tm(P)
can be expressed as
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Tm0, ξ0 and B0 the melting temperature, Grüneisen parameter
and bulk modulus are at ambient condition respectively; a1 and b1
are the pressure derivatives of Grüneisen parameter, (∂ξ/∂P) and
the bulk modulus, (∂B/∂P) respectively. If the Grüneisen parameter
is assumed to be independent of P, then Eq. (6) simplifies to
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Eq. (8) is a simplified version to compute the pressure depen-
dence of the melting temperature subject to the condition that the
bulk modulus of the material depends linearly on pressure and the
Grüneisen parameter remains invariant.

It is of interest to compare Eq. (8) to one of the most important
and extensively used Simon's empirical relation,
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It suggests that the Simon's constants X and Y can readily be
related to the bulk modulus and the Grüneisen parameter as,
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To find the pressure, Pm at which Tm becomes maximum, we
differentiate Eq. (6) with respect to P and set it equal to zero. This
leads to the relation
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For most metals ξ0 is greater than 1/3. Hence the pressure
derivative of Grüneisen parameter, a1 must be negative. It suggests
that Grüneisen parameter, ξ decreases with pressure which is in
agreement with available results [16].

2.1.2. Non-linear dependence of ξ and B on pressure
In this case of non-linear variation of ξ and B with pressure, P,

we have considered equations up to second order in P which may
be written as
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Higher order terms in Eqs. (12) and (13) could be considered
but it would pose a great hindrance in formulating an analytical
solution. Integration of Eq. (3) leads to
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To solve the above integral equation analytically we substitute
Eqs. (12) and (13) in Eq. (14) and get
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It is possible to integrate I1, I2 and I3 analytically for two con-
ditions (i) <b B b41

2
0 2 and (ii) >b B b41

2
0 2. We provide below explicit

expressions satisfying these two conditions:

2.1.2.1. Solution for condition I: if <b B b41
2
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The above integrals are to be evaluated between the limits
0 and P. After substituting Eqs. (19)–(21) in Eq. (15), we obtain an

S. Arafin, R.N. Singh / Journal of Physics and Chemistry of Solids 91 (2016) 101–105102



Download English Version:

https://daneshyari.com/en/article/1515351

Download Persian Version:

https://daneshyari.com/article/1515351

Daneshyari.com

https://daneshyari.com/en/article/1515351
https://daneshyari.com/article/1515351
https://daneshyari.com

