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Structures under parametric load can be induced to the parametric instability in which the excitation
frequency is located the instability region. In the present work, the parametric instability of double-
walled carbon nanotubes is studied. The axial harmonic excitation is considered and the nonlocal con-
tinuum theory is applied. The critical equation is derived as the Mathieu form by the Galerkin's theory
and the instability condition is presented with the Bolotin's method. Numerical calculations are per-
formed and it can be seen that the van der Waals interaction can enhance the stability of double-walled
nanotubes under the parametric excitation. The parametric instability becomes more obvious with the
matrix stiffness decreasing and small scale coefficient increasing. The parametric instability is going to be
more significant for higher mode numbers. For the nanosystem with the soft matrix and higher mode
number, the small scale coefficient and the ratio of the length to the diameter have obvious influences on

the starting point of the instability region.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, due to the outstanding mechanical, electrical
and chemical properties, a lot of attention has been paid on carbon
nanotubes [1-4]. With the excellent characteristics for the high
stiffness and strength, low density and remarkable electronic
characteristics, carbon nanotubes have been found many im-
portant and interesting applications. Furthermore, because of the
highly resonance frequency, diminished active masses and toler-
able force constants, vibration and dynamical properties are the
special features of carbon nanotubes. They can make the nano-
electromechanical systems (NEMS) suitable for the multitude
technologies, such as ultra fast sensor, actuators and signal pro-
cessing components, etc. Then, the vibration and dynamical
characteristics require the further comprehensive investigations.

In order to present the mechanical analysis of carbon nano-
tubes, people have employed two main methods, i.e. the atomistic
simulations and elastic continuum models. The molecular dy-
namics (MD) is the most common approach for the atomistic si-
mulations but it requires extensive computations and need quite a
lot of time. Instead, the continuum model such as elastic beams
has been applied by many researchers. However, the classical
continuum model cannot present the small scale effects which
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become rather significant for the nanostructures. Different from
the classical continuum model, the nonlocal elasticity theory in-
troduced by Eringen [5,6] can illustrate the small scale effects and
received much attention on the buckling [7-10], vibration [11-18]
and wave propagation [19-26] behaviors of nanostructures.

It is known that different from the free vibration properties, the
forced vibration of elastic structures can present some unique
information. For example, elastic beams under the axial harmonic
load may lead to the phenomenon named as the parametric in-
stability. The axial harmonic excitation can change the stiffness of
the elastic system and result in the parametric vibration and in-
stable region which are the main features of the elastic dynamics.
During the forced vibration, the parametric instability may occur
at some excited frequency regions, which is an important issue
concerned by the researchers and engineers.

Although some results on the free vibration of nanotubes have
been reported, studies on dynamical properties of carbon nanotubes
under axial harmonic load are very limited. Due to the parametric
instability by the axial harmonic load [27,28], investigations on the
forced vibration need more attention. The present work is mainly
focused on the parametric vibration and instability of double-walled
nanotubes. Different from the classical continuum theory, the gov-
erning equation of double-walled nanotubes under the parametric
excitation is derived by the nonlocal model. Based on the Galerkin's
method, the numerical calculations can be performed with the
coupled Mathieu equations. On the other hand, instable regions are
presented to show the dynamic properties of nanotubes.
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2. Basic equations and solutions

The double-walled carbon nanotubes embedded in the elastic
matrix under the axial harmonic load (i.e Fcos{2t) are shown in
Fig. 1. The parametric excitation is along the longitudinal direction
with the harmonic frequency £2. The double-walled nanotubes are
composed of two nested individual tubes with the thickness t for
of each one. The structure length is L with the hinged boundary
conditions and the elastic stiffness of the matrix is k,,.

According to the nonlocal continuum theory which considers
the scale effects, it assumes that the stress at a reference point x in
an elastic solid is a function of the strain at every point in the body.
The basic equations can be given as [5,6]
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where ¢y, is the nonlocal stress tensor, g the strain tensor, p the
mass density, u; the displacement vector, z;(X’) the classical (i.e.
local) stress tensor, a(X, X’) the kernel function which describes
the influence of the strains at various location x’ on the stress at a
given location x and V the entire body.
The nonlocal constitutive relation of the one-dimensional
stress state can be given as
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where E is the Young's modulus, eg the constant appropriate to
each material and a the internal characteristic length (e.g. the
length of C-C bond, the lattice spacing and the granular distance).
Furthermore, eq is determined from experiments or by matching
dispersion curves of the plane waves with the atomic lattice dy-
namics and epa denotes the scale coefficient which can describe
the small scale effect of the nanostructures. If eqa=0, it denotes
the classical local model and epa is usually smaller than 2.0 nm
from previous discussions.

For the Euler-Bernoulli beam model, the axial force and the
resultant bending moment are

N = /Adxd/-\,

The vibration equation which is perpendicular to the x axis can
be expressed as [29,30]
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where S; = 0 Mj/d x is the shear force of the j-th nanotube with j=1
and 2, ¢ the van der Waals interaction coefficient denoting the
displacement coupling between the inner and outer nanotubes,
the axial excitations Fj=¢ A;j and ¢ the axial stress load.

Then the governing equation of the parametric vibration for the
double-walled nanotubes can be expressed as
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Fig. 1. Double-walled carbon nanotubes under harmonic parametric excitation by
the nonlocal model.
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Moreover, the displacements for the inner and outer nanotubes
can be expressed as [12,13]
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where W; is the real constant and k is the mode number.
According to Egs. (5a), (5b), and (6) and the Galerkin's method,
we can derive that
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Egs. (7a) and (7b) can be derived by Mathieu form as
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