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a b s t r a c t

Here we propose a semi-empirical approach to describe with good accuracy the electron momentum
densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we
use an experimental Compton profile to fit an analytical expression for the momentum densities of the
valence electrons. This expression is similar to a Fermi–Dirac distribution function with two parameters,
one of which coincides with the ground state kinetic energy of the free-electron gas and the other re-
sembles the electron–electron interaction energy. In the proposed scheme conduction electrons are
neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include
correlation effects.

We tested the approach for all metals with Z¼3–50 and showed the results for three representative
elements: Li, Be and Al from high-resolution experiments.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Compton profile (CP) spectroscopy is a widely used tool to
extract information about the electronic structure of crystalline
solids. It provides the electron momentum density (EMD), which,
in turn, allows the verification of the quality of the radial electron
wave functions, since they are related through Fourier transforms.
It is commonly accepted that many properties of the solids can be
well represented by dividing the electrons into two groups: inner-
core and conduction electrons. The former do not participate in
crystalline bonding in solids and can be treated as frozen orbitals.
Both bound and conduction electrons contribute to the total CP in
different ways according to their spatial localization. Since con-
duction electrons are less bound, they have largely spread radial
orbitals, and are therefore highly localized in momentum space.
Thus, they contribute to the CP with a sharp peak located at low
momentum transferred [1]. On the other hand, the electrons in the
inner shells are strongly bound and have spatial orbits circum-
scribed to relatively small distances to the atomic nucleus. Their
contribution to the CP takes place as a low-intensity broad tail at

high momentum transferred.
Historically, CPs obtained in experiments with high-resolution

(∼ 0.1–0.2 a.u.) X-ray have been successfully compared with those
obtained by different theoretical methods, such as Quantum
Monte Carlo [2,3], ab initio Green's function approximation [4],
and DFT calculations with different exchange-correlation func-
tionals [5–8]. The local density approximation (LDA) within the
density functional theory (DFT) has been widely used to predict
various bulk properties of different solids [9,10]. However, when
theoretical CPs obtained by LDA calculations are compared with
experimental ones, an overestimation at low momentum transfer
and underestimation at high momentum transfer are observed.
These discrepancies have been attributed to the incorrect ex-
change and correlation effects given by the LDA functional. Dif-
ferent methods based on Lam–Platzman correction [11–13] have
been proposed to remedy the LDA deficiencies in the CP estima-
tions. However, studies with high-resolution Compton scattering
experiments of Li have revealed an anomalous behavior when it is
compared with the theory [14–16], given that it has not been
possible to describe by means of free-electron or by Fermi-liquid
theory. Such deviations from the standard metallic picture can be
ascribed to the possible existence of significant pairing correla-
tions in the ground state identified in terms of electron transfers
from s-like to p-like character, constituting a possible explanation
for the breakdown of the Fermi-liquid picture [13,17].
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For metallic systems one can define the Fermi surface (FS) as
the break in the EMD whose presence reveals the existence of
quasi-particles and the validity of the Landau–Fermi liquid theory.
In this sense, the anti-symmetrized geminal product (AGP)
method has been successfully used for a wide range of materials.
This provides an orbital-dependent approach in which the elec-
tron momentum density is constructed using the natural orbitals,
and the corresponding occupation numbers are obtained through
a variational procedure [13,18].

In a recent work [19], high accuracy momentum densities and
Compton profiles of Be, Cu, Ni, Fe3Pt, and YBa2Cu4O8 were ob-
tained using ab initio calculations of the linear tetrahedron
method.

In this work, we propose a systematic approach to calculate the
CPs of several crystalline metals by using a simple analytical ex-
pression for the valence EMD able to reproduce the CP with very
high accuracy. The method allows including electron correlation
effects based on the joint use of Fermi liquid and Hartree–Fock
formalism. The formula proposed resembles the Fermi–Dirac dis-
tribution, but the thermodynamic constants are replaced by fitting
parameters. A thorough and systematic investigation, led us to
recognize that these fitting parameters are related to the Hartree–
Fock energy of the free-electron ground state. These energies can
be expressed either in terms of the Fermi momentum or, in terms
of the Wigner–Seitz radius.

The present approach allows to calculate the CPs of all the
metals with Z¼3–50. Comparison with the experimental results
showed good agreement in most of the cases. As an example, we
show three selected metals with different valence values.

The rest of the paper is arranged as follows. Sections 2 and 3
describe the theoretical methods, especially the connections be-
tween kinetic and exchange energy of electrons in solids with
thermodynamic distribution. Section 4 describes the comparison
between our semi-empirical calculations and the experimental
results for some representative elements. Finally, a brief summary
is given in Section 5.

2. Theory

In a nonrelativistic and high-energy transfer regime, theoretical
calculations for isotropic CPs are commonly performed under the
impulse approximation (IA). It is assumed that energy and mo-
mentum are conserved. Limitations to the IA validity in Compton
scattering have been widely discussed by [20]. This approach is
expected to be valid when the energy transferred in the scattering
process is much greater than the binding energy of the electron
orbital.

The isotropic valence CP is defined under the IA as
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The free electron gas (FEG) CP is defined as
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where I p dp( )r is the probability of an electron at position r to have
a momentum of magnitude between p and p dp+ . The Thomas–
Fermi theory states that, at zero temperature
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and rWS is the Wigner–Seitz radius of a sphere containing a single
electron [21]. Inserting Nn0 in place of nval in Eq. (1), the FEG CP is
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The CP given by Eq. (7) has the form of an inverted parabola for
q kF≤ and is zero for q kF> . The same profile is produced by
assuming a plane wave function e V/ik r− · for the free electrons.

It should be noted that the valence EMD obtained from the
non-interacting FEG CP (using Eq. (2)) coincides with the Fermi–
Dirac distribution function:
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where p /22 is the energy of the single-particle state, μ is the
chemical potential k( /2)F

2∼ , and K TB is the thermal energy of the
FEG [4]. Unfortunately, FEG model does not produce good results
due to the effects of interactions with the periodic lattice potential
and mutual electrons Coulomb interactions are neglected in these
simple approaches.

3. Semiempirical approach

To generate parametric valence EMDs that lead to the correct
CP values, we propose to use a modified Fermi–Dirac distribution
function. As pointed out in [22], we can modify the Fermi–Dirac
distribution with some broadening energy parameters. In our ap-
proach, we introduce μe and Te, called the electronic chemical po-
tential and the electronic Fermi temperature, respectively, in ana-
logy with the thermodynamic counterparts:
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For a systematic study, we took the data from several CPs of
pure crystalline metals (Z¼3–50) with the purpose to extract the
valence EMD, as stated in Eq. (2). The elements and references
used were: Li [14], Be [23], B [24], C (graphite) [25], Na [26,3], Mg
[27], Al [28], Si [29], K [30], Ca [31], Sc [32], Ti [33], V [34], Cr [35],
Mn [36], Fe [34], Co [37], Ni [34], Cu [38], Zn [39], Ga [40], Ge [29],
Se [41], Rb [30], Sr [30], Y [42], Zr [43], Nb [30], Mo [44], Ru [45],
Rh [46], Pd [47], Ag [48], Cd [39], In [30], and Sn [49].

To follow this approach, we rely on the fact that the derivative
of the valence EMD n p p( )/val∂ ∂ provides information about the two
required energies. This derivative function exhibits a peak at a
momentum value corresponding to the electronic chemical po-
tential μe, and the spread of this function corresponds to the
electronic Fermi energy k TB e . We must point out that these
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