

Contents lists available at ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Gas holdup, bubble behavior and mass transfer in a 5 m high internal-loop airlift reactor with non-Newtonian fluid

Zhonghuo Deng, Tiefeng Wang*, Nian Zhang, Zhanwen Wang

Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 26 September 2009 Received in revised form 28 March 2010 Accepted 29 March 2010

Keywords: Airlift reactor Mass transfer Bubble size distribution Interfacial area Non-Newtonian fluid

ABSTRACT

Gas holdup, bubble behavior, interfacial area and gas–liquid mass transfer in a 5 m internal-loop airlift reactor with non-Newtonian fluid were studied in the superficial gas velocity (U_g) range of 2–12 cm/s. Air and aqueous CMC solutions of 0–0.45 wt% were used as the gas and liquid phases, respectively. It was found that increased U_g or CMC concentration led to a wider bubble size distribution and an increase in the bubble Sauter diameter. The volumetric mass transfer coefficient increased with an increase in U_g and a decrease in CMC concentration. In the air–water system, k_1a/α_g was found to be independent of U_g and was 0.2 1/s, and a constant liquid-side mass transfer coefficient (k_1) was found in the heterogeneous regime. However, in the air–CMC solution system, the influences of the superficial gas velocity and liquid viscosity were much more complicated: k_1a/α_g was not constant and was affected by the superficial gas velocity and CMC concentrations; the interfacial area increased with an increase in U_g and a decrease in CMC concentrations of k_1a/α_g was not constant and was affected by the superficial gas velocity and CMC concentrations the interfacial rea increased with an increase in U_g and a decrease in CMC concentration k_1 .

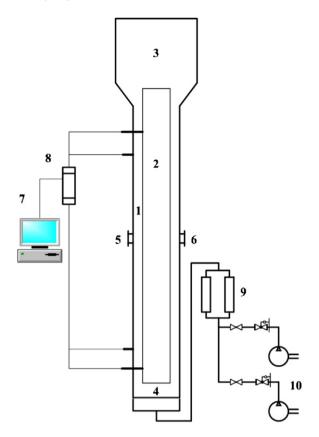
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Airlift reactors are widely used in chemical and biochemical industrial processes, because of their simple construction, good heat transfer, low shear rate, low power input and easy scale up [1,2]. Mass transfer is one of the most significant factors in process design and reactor scale up, and has been intensively studied in airlift reactors during the past decades [3–9]. However, most of these studies have focused on experimental determination of the volumetric mass transfer coefficient (k_1a) , which is a global parameter that depends on reactor geometry, operating conditions and phase properties [7,10–14]. The common approach to describe k_1a is to correlate it with the factors that affect it. The separation of liquid-side mass transfer coefficient (k_1) and interfacial area (a)can allow the identification of whether k_1 or a controlled the mass transfer rate. However, only a few investigations focus on such improvement [9,15-18]. In this work, we performed this study on the influence of non-Newtonian fluid.

In fact, the mass transfer rate in an airlift reactor depends on gas holdup, flow regime, bubble size distribution, bubble breakup and coalescence, interfacial area and liquid-side mass transfer coefficient [19]. Further, local measurements of these parameters are needed because they can provide much more details than global measurements [1,20,21], and can be used for validations of computational fluid dynamics (CFD) simulations [22].

The reactor size has a significant influence on the hydrodynamics and mass transfer rate [14,23-25]. It is commonly accepted that the hydrodynamics becomes independent of the column size only when the column diameter (D), column height (H), and aspect ratio (H|D) are larger than certain threshold values [2]. Wilkinson et al. [26] suggested that *H* should be larger than 1–3 m. However, most works on the airlift reactor in the literature have used reactors of about 2 m [10,13,27,28], and only some works have used a reactor of 4 m high [5,6,29,30]. Therefore, an investigation using a larger airlift reactor will be valuable for a better understanding of the scale up behavior. In addition, most works on airlift reactor in the literature has been carried out with Newtonian fluid and much limited attention has been paid on studies of non-Newtonian or high viscosity liquid systems [15,27,31-34], despite the fact that in many chemical reactors the fluids have a relatively high viscosity or exhibit non-Newtonian behavior [35]. Different from that of Newtonian fluid, the viscosity of non-Newtonian fluid is dependent of shear rate. For instance, the viscosity of the shear thinning non-Newtionian fluids decreases when shear rate increases [36]. Further, the results in the literature are still not enough for a better understanding on the influence of non-Newtonian fluid. For example, Li et al. [32] studied the influence of non-Newtonian fluid on the hydrodynamics and mass transfer using a wide range CMC concentration of 1-4% in a 3.9 m high internal airlift reactor. However, this work was limited to experimental determination of k_1a


^{*} Corresponding author. Tel.: +86 10 62797490, fax: +86 10 62772051. *E-mail addresses*: wangtf@tsinghua.edu.cn, wangtf@flotu.org (T. Wang).

^{1385-8947/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cej.2010.03.078

Nomenclature	
Notations	
a _l	gas–liquid interfacial area per unit liquid volume, m^{-1}
a _{large}	gas–liquid interfacial area of large bubble, m ⁻¹
a _{small}	gas-liquid interfacial area of small bubble, m ⁻¹
а	gas-liquid interfacial area per unit dispersion vol-
	ume, m ⁻¹
Ad	cross-sectional area of the downcomer, m ²
Ar	cross-sectional area of the annular riser, m ²
C_{l}	oxygen concentration in the liquid, kg/m ³
C_l^*	saturation oxygen concentration in the liquid,
	kg/m ³
Csensor	liquid phase oxygen concentration given by sensor, kg/m ³
$d_{\rm b}$	bubble diameter, m
ds	bubble Sauter diameter, m
h	height, m
Κ	consistency index, Pa s ⁿ
k_1	liquid-side mass transfer coefficient, m/s
k_{large}	liquid-side mass transfer coefficient of large bubble,
	m/s
$k_{ m small}$	liquid-side mass transfer coefficient of small bubble,
	m/s
k _{sensor}	sensor time constant, s ⁻¹
k _l a	volumetric mass transfer coefficient based on dis-
1	persion volume, s ⁻¹
k_1a_1	volumetric mass transfer coefficient based on liquid
	volume, s ⁻¹
n P	flow index, arbitrary units
r t	pressure, Pa
	time, s superficial gas velocity, cm/s
Ug	superficial gas velocity in the riser, cm/s
$U_{\rm gr}$	superioral gas velocity in the fiser, cill/s
Greek symbols	
$lpha_{ m g}$	gas holdup, arbitrary units
$\alpha_{ m gd}$	gas holdup in the downcomer, arbitrary units
$lpha_{ m gr}$	gas holdup in the riser, arbitrary units
γ	shear rate, s ⁻¹
μ_{app}	apparent viscosity, Pa s
τ	shear force, N/m ²
$ ho_{l}$	liquid density, kg/m ³
Subscripts	
d	downcomer
g	gas phase
ĩ	The state of the second s

This work studied the gas holdup, bubble behavior and gas-liquid mass transfer rate in a 5 m high internal-loop airlift reactor with water and aqueous solution of carboxyl methyl cellulose (CMC). The influences of the CMC concentration and superficial gas velocity (U_{σ}) on the global and local gas holdup, bubble size distribution, volumetric mass transfer coefficient, interfacial area and liquid-side mass transfer coefficient were investigated.

1. Riser; 2. Downcomer; 3. Separator; 4. Gas distributor;

5. Electrical conductivity probe port; 6. Oxygen probe port; 7. PC;

8. Differential pressure transducer; 9. Flow meter; 10. Compressor.

Fig. 1. Schematic of the experimental set-up.

2. Experimental

2.1. Experimental apparatus

The schematic of the experimental apparatus is shown in Fig. 1. The internal-loop airlift reactor used was made of Plexiglas. It comprised four main parts: annular riser, downcomer, gas-liquid separator and gas distributor. The total height of the reactor was 5 m. The riser was 0.28 m inner diameter (i.d.), and 4.1 m high. The separator was 0.48 m i.d., and 0.9 m high. The draft tube was 0.19 m outer diameter, 0.18 m i.d., and 4.0 m high. The gas distributor was an annular perforated plate with 196 holes of 1 mm diameter, thus the gas was only injected into the annular riser.

2.2. Physical properties

Air was used as the gas phase. Tap water and aqueous CMC solution of 0.2-0.45 wt% were used as the liquid phase. The apparent viscosity of the CMC solutions was measured by a viscometer, and can be expressed as [37]:

$$\mu_{\rm app} = \frac{\tau}{\gamma} = K \gamma^{n-1} \tag{1}$$

where *K* is the consistency index, and *n* is the flow index. The measured values of K and n are listed in Table 1. To illustrate the characteristic viscosity of the liquid phase, the apparent viscosities at the shear rate of $200 \, \text{s}^{-1}$ are also listed in Table 1.

1

r

liquid phase

riser

Download English Version:

https://daneshyari.com/en/article/151547

Download Persian Version:

https://daneshyari.com/article/151547

Daneshyari.com