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a b s t r a c t

Density functional theory for the case of general, N-representable densities is reformulated in terms of
density functional derivatives of expectation values of operators evaluated with wave functions leading
to a density, making no reference to the concept of potential. The developments provide proof of ex-
istence of a mathematical procedure that determines whether a density is v-representable and in the
case of an affirmative answer determines the potential (within an additive constant) as a derivative with
respect to the density of a constrained search functional. It also establishes the existence of an energy
functional of the density that, for v-representable densities, assumes its minimum value at the density
describing the ground state of an interacting many-particle system. The theorems of Hohenberg and
Kohn emerge as special cases of the formalism. Numerical results for one-dimensional non-interacting
systems illustrate the formalism. Some direct formal and practical implications of the present re-
formulation of DFT are also discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The theorems of Hohenberg and Kohn [1–3] ushered in density
functional theory (DFT), a paradigm in quantum mechanics geared
towards the solution of the electronic structure problem defined,
for our purposes, as the determination of the quantum states of an
interacting system of N-electrons in condensed matter. The theo-
rems are developed with respect to the static ground state of an
interacting system. The First Theorem shows that the density de-
termines the potential, v r( ), acting on an interacting N-particle
system as a unique (within an additive constant) functional of the
density. The Second Theorem establishes the existence of an en-
ergy functional of the density

nE n v T Ur r rd , 1v
N N

GS GS∫ Ψ Ψ[ ] = ( ) ( ) + 〈 | ^ + ^ | 〉 ( )

where r r r, , N NGS 1 GSΨ Ψ( … ) = ( )( ) is the wave function of the ground
state of an interacting N-particle system evolving under the action

of an external potential, v r( ). The operators, T
N^ and U

N^ , denote,
respectively, the kinetic energy and inter-particle interaction of
the interacting system. We consider a function of coordinates to be

a density if it is everywhere non-negative, normalized to an in-
teger, N, and satisfies the so-called kinetic energy condition
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The minimum value of E nv [ ] occurs at the exact density of the
ground state of an interacting systemwhere it equals the energy of
the system's ground state.

The expectation value
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is the Hohenberg and Kohn functional that is determined through
knowledge of the density alone being independent of the poten-
tial, and is hence referred to as a universal functional of the
density.

By construction, the theorems are applicable to densities that
are pure-state v-representable, i.e., are derived from the solution
of a Schrödinger equation corresponding to a given potential
(other forms of v-representability, such as ensemble v-represent-
ability can be defined but not considered here). We confine the
discussion to pure-state v-representability and refer to the con-
dition simply as v-rep. As is well-known [2,4], however, the v-rep
condition introduces a serious difficulty in the theory, known as
the v-representability problem. Namely, given an arbitrary density
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the present form of the theory provides no mathematical proce-
dure that can determine whether or not it is v-rep.

The main difficulty presented by F nHK [ ] springs from the fact
that the set of v-rep densities is unknown, (given a density it
cannot be ascertained as to whether or not it is v-rep), and con-
sequently, F nHK [ ] is ill-defined [5] (the basic formulation of the v-
rep problem). An additional difficulty arises because the set of v-
rep densities is not differentially dense, i.e, there exist densities
that do not come from a potential [6–10] of an interacting (or non-
interacting) system. If one ignored these difficulties, the potential
would be obtained from the relation
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modulo an arbitrary constant (that leaves the density unchanged).
This relation is generally accepted as to arise from the minimum
property of the energy functional, Eq. (1), at the density of the
ground state of the system (characterized by v r( )). In the con-
ventional interpretation of functional differentiation, the func-
tional derivative, F n

n r
HKδ

δ
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( )
, defined through the procedure [2] (where

the test function, rϕ ( ), is arbitrary):
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at a given density hinges on the evaluation of the Hohenberg and
Kohn functional, F n nHK δ[ + ], at densities that differ infinitesimally
from n r( ). This requires that the density, n nr rδ( ) + ( ), be v-rep, a
serious difficulty since the set of v-rep densities is not known, as
well as requiring the existence of a small dense neighborhood
around the density in which the densities are v-rep. Assuming
such a neighborhood for any density, it can be readily shown that
all densities are v-rep in contradiction to known facts to the
contrary [2,6,7]. (A direct proof of the impossibility of differ-
entiating over the domain of v-rep densities is given near the end
of this paper.)

An additional problem exists in the performance of functional
differentiation. Conventional functional differentiation requires
that the domain of the functional, say the set of densities, n r{ ( )},
with a given normalization, N, contains all variations of the form,
n nr r rϕ( ) → ( ) + ϵ ( ), where rϕ ( ) is arbitrary (within common ca-
veats of smoothness and integrability), and 0ϵ → . It is certainly
not true that the set of v-representable densities possess this
property. Unfortunately, neither does the set of all densities as
arbitrary variations may break the requirement of integral
normalization.

At least two more difficulties must be mentioned in attempting
the performance of the derivative: First, F nHK [ ] is defined in terms
of an expectation value with respect to the wave function of a pure
state (possibly the solution of a Schrödinger equation) and hence
with respect to densities with integral normalization, a condition
that may fail in the mathematical process of functional differ-
entiation that is based on the use [2] of an arbitrary test function,

rϕ ( ), (such that n r rδ ϕ( ) = ϵ ( ), with 0ϵ → ). Second, the perceived
need to obtain the potential through the functional derivative in
(5) requires the knowledge of the value of F nHK [ ] at densities other
than the one in question, and thus stands in contradiction to the
First Theorem [1] specifying that the potential is given through
knowledge of the density alone. The requirement that the test
function be arbitrary causes further difficulties. A density must be
non-negative but for arbitrary functions rϕ ( ) it is possible that
n r r 0ϕ( ) + ϵ ( ) < . Guarding against the appearance of a negative
density compromises the arbitrariness requirement on the test
function.

A formal solution to the v-representability problem has been
sought in terms of potential functional theory [4]. Here, for N-

particle systems, one introduces functionals of potential,
E w E n wN v N v, ,

HK[ ] = [ [ ]], where E n wN v,
HK [ [ ]] is the Hohenberg and Kohn

energy functional for v r( ), usually denoted by the symbol, E nv [ ],
evaluated at the v-rep density, n r( ), corresponding to potential,
w r( ). The stationary points (minima) of E wN v, [ ] occur at the po-
tentials, w v cr r( ) = ( ) + , associated with the minima of the Ho-
henberg and Kohn functional at the v-representable densities
corresponding to v r( ). The optimized effective potential (OEP)
method [11–15] requires this theory as its mathematical justifi-
cation. Potential functional theory relies on the concept of func-
tionals of potential defining a space that is the dual of that of
density functional theory. For such a concept to be valid one must
have some way of excluding densities that are not v-representable
from the space of the densities.

The introduction of the concept of N-representability [2,7,16],
referred to as N-rep, namely that all densities can be obtained
from antisymmetric, N-particle wave functions, established the
rigorous foundation of a functional that, when the density is v-
representable, leads to F nHK [ ]. In other words, the set of v-re-
presentable densities is a subset of all densities, each of which
leads to a well-defined functional, F n[ ]. Hence, the set F nHK [ ] is a
subset of functionals each of which is well-defined, so that the
subset is well-defined. N-representability and the constrained
search establish existence but provide no means of determination,
identification or construction of F nHK [ ]. Neither does N-re-
presentability resolve the difficulties with respect to normalization
in the performance of functional differentiation.

The v-representability problem would be convincingly solved
through the development of a rigorous mathematical procedure
that, at the formal level, could determine whether or not the
density is v-representable. For this to materialize, density func-
tional theory must be formulated entirely based on the density,
without reference to a potential. This paper provides a formulation
at the same level of conceptual rigor as the constrained search of
the existence of such a procedure.

The remainder of the paper takes the following form. The
generalization of the Hohenberg and Kohn theorems to general, N-
representable densities is presented in the following section. Then,
we show how the density and corresponding wave function can be
determined given the derivative with respect to the density of a
functional of the density determined as the minimum expectation
value of the sum of the kinetic and inter-particle potential op-
erators. A discussion of the formal developments in the paper is
given in the final section.

2. Hohenberg and Kohn Theorems for N-representable
Densities

The main result of the paper is a generalization of the Ho-
henberg and Kohn theorems in terms of general densities without
the condition that they are derived from a potential. The gen-
eralization is based on the concept of parametric differentiation
leading to the determination of rates of change [17] with respect to
the density of expectation values of operators in terms of wave
functions that lead to a density. Now, the arbitrary test function of
conventional functional differentiation is replaced by a Dirac delta
function leading to the definition

F n
n

F n F n
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The Dirac delta function is not a proper function. Therefore
n r r rδ( ) + ϵ ( − ′) does not represent a proper charge density ex-
pected to yield an energy (expectation) value. Instead, it provides a
method of parametric differentiation of any functional of densities
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