

Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

Influence of polarization and iron content on the transport properties of praseodymium-barium manganite

H. Rahmouni^{a,*}, B. Cherif^a, K. Khirouni^a, M. Baazaoui^b, S. Zemni^b

^a Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l'Environnement, Faculté des Sciences de Gabès, Université de Gabes, cité Erriadh, 6079 Gabès, Tunisia

^b Laboratoire de Physico-Chimie des Matériaux, Département de Physique, Faculté des Sciences de Monastir, Université de Monastir, B. P. 22, 5019 Monastir, Tunisia

ARTICLE INFO

Article history: Received 9 July 2015 Received in revised form 31 August 2015 Accepted 24 September 2015 Available online 28 September 2015

Keywords: Oxides Electrical properties Electrical conductivity

ABSTRACT

Polarization and iron effects on the electrical properties of $Pr_{0.67}Ba_{0.33}Mn_{1-x}Fe_xO_3$ have been studied using impedance measurements. When iron is introduced, the insulator-metal transition (MI), observed in free compound, disappears and destroying such transition needs an iron concentration less than 5%. We also found that electrical conductance decreases when increasing Fe content. Such results are attributed to the decrease of Mn^{3+}/Mn^{4+} ratio. Also, they are ascribed to the high probability of encountering Fe^{3+} -O- Fe^{3+} and Mn^{3+} -O- Fe^{3+} interactions, which greatly weakens the influence of $Mn^{3+}-O-Mn^{4+}$ interactions. The AC conductivity studies indicate that different types of hopping are involved. The contribution of hopping mechanism is confirmed by the temperature dependence of the frequency exponent 's'. Conductivity analysis shows that small polaron hopping (SPH) and variable range hopping (VRH) models are present in the conduction process. For small iron concentrations (x < 0.1), we found that activation energy (E_a) does not changes significantly. Such result is in good agreement with the literature. But, for high iron concentrations (x > 0.1), we found that E_a depend strongly in Fe content. We also found in this work that DC-bias does not affect the conduction process but proves its thermal activation. The variation of the conductance with polarization is a proof of an electro-resistance effect. © 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Manganese perovskite materials attract a great deal of interest because they have potential applications [1-3]. They can be used in magnetic recording, sensoring, refrigeration [4,5] and as cathodes in solid oxide fuel cells (SOFC) [6]. Manganites are known to exhibit interesting electronic properties which are explained by many mechanisms [7-10]. During the last few years, the manganites of the type $Ln_{1-x}A_xMnO_3$, where Ln is a trivalent element (Pr, La, Nd, ...) and A is a divalent one (Ba, Ca, Sr, ...) are widely studied [11,12]. The magnetic and transport properties of these compounds depend on several factors such as the ratio of the divalent ion, the ionic radii of the metal ion, the elaboration method of the samples, etc. In a similar way, the substitution of Mn by Fe can produce important modifications in the magnetic and transport properties of these materials [13]. Different substitutions in these systems lead to different transport properties. The replacement of the trivalent element by a divalent or a monovalent one produces an inhomogeneous distribution of Mn³⁺ and Mn⁴⁺ ions to

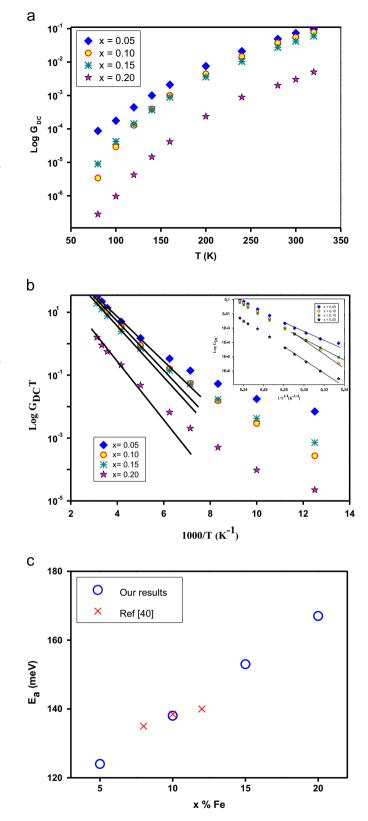
maintain charge neutrality and subsequently, this modifies both of the magnetic and transport properties. Such modifications can be understood on the basis of the interactions between the spin of Mn³⁺ and Mn⁴⁺ ions. In doped manganites, many efforts are devoted to highlight the central role of the Mn⁴⁺-O-Mn³⁺ interactions. In the last few years, various researches [14-16] have suggested that doping at Mn-site influences the polaronic transport. The effect of substituting Mn by Sn, Fe, Cr and Ti is well studied by our group [17–22]. Also, the effects of introducing Ag in manganite-system on electric and dielectric properties are recently studied [23–26]. Different conduction mechanisms appear when changing the dopant element, its concentration and the substitution sites. The most observed mechanisms are hopping and percolation ones. Recently, we have investigated the iron effects in the electrical properties of LaBaMnO₃ system [22]. On one hand, we found that electrical properties are strongly dependent on the iron content. On the other hand, the composition x=0.1represents the limit value of Fe concentration which destroys the metallic-insulator transition. Few works and less discussions have been done on the electrical properties of PrBaMnO₃[27] and Fe doped PrBaMnO₃[28,29]. In this work, we introduced iron in Pr_{0.67}Ba_{0.33}MnO₃ and we study its effect on the electrical properties of this compound. Also, polarization effects are investigated.

^{*} Corresponding author. Fax: +216 75 392 421. E-mail address: rahmounihedi@vahoo.fr (H. Rahmouni).

The complex impedance spectroscopy is used to study the electrical properties of samples with different Fe concentrations. This technique provides a simple method to determine the contribution of different mechanisms to the total conductivity of materials and allows studying the polarization effects.

2. Experimental details

Perovskite manganese oxides with nominal composition $Pr_{0.67}Ba_{0.33}Mn_{1-x}Fe_xO_3$ (PBMO–Fe) ($0 \le x \le 0.2$) are prepared by standard solid state reaction using stoichiometric amounts of precursors, Pr_6O_{11} , $BaCO_3$, Mn_2O_3 and Fe_2O_3 , with a purity better than 99.9%. The powder is fired at 700 °C for 24 h. Then, we performed several cycles of grinding, pelletizing and heating for 24 h at 1100 °C and then 1200 °C to obtain a well crystallized phase. The powders are pelleted at a pressure of 105 N cm⁻². The samples are finally annealed at 1453 K for 24 h in air. In previous works [28,29], powder X-ray diffraction and powder neutron diffusion are used to investigate the structure and the morphology of the compound. They have shown that the structural parameters and the grain sizes are not affected by Fe doping.


Pellets with a diameter of 10 mm and a height around 1 mm are used for electrical measurement. An indium ball of a diameter of one millimeter is cut in two pieces. The cut faces are directly deposited on one side of the pellet separated by a distance of 5 mm. Then, the pellet is heated to 170 °C to obtain ohmic contact. The other side is bounded to the cold finger of liquid nitrogen cooled cryostat to vary the sample temperature between 77 and 320 K. The two indium pads are connected to the electrodes of an Agilent 4294 A impedance analyzer to measure the sample conductance. Samples is modeled by a parallel circuit and excited by an alternating signal of an amplitude of 50 mV.

3. Result and discussion

3.1. DC conductivity analysis

The temperature dependence of dc-conductance G_{DC} of PBMO– Fe is shown in Fig. 1a. The material exhibits a semiconductor behavior throughout the whole temperature range. The metal–insulator (MI) transition is not observed for all iron concentrations. So, introducing iron in PBMO system suppresses the MI transition observed in free compound [28]. This effect of iron was observed in the La_{0.67}Ba_{0.33}MnO₃ compound [22]. In the temperature range (80–320 K), we observe that DC conductance decreases with increasing Fe content. The decrease of G_{DC} is due to the replacement of Mn³⁺ ion by Fe³⁺ one. The *eg* band of manganese is responsible for the hop of the electron from Mn³⁺ to Mn⁴⁺ via oxygen. So the replacement of Mn³⁺ by Fe³⁺, which has a completely filled eg band, causes the blocking of the electron hopping between Mn³⁺ and Fe³⁺[30,31].

The electron executing hop from one site of Mn^{3+} will find Fe^{3+} , i.e. $Mn^{3+}-O-Fe^{3+}$ network, around itself. The Fe^{3+} could hinder the $Mn^{3+}-O-Mn^{4+}$ networks, which are responsible for carrier hopping, and reduces the available sites for hopping [32]. The decrease in G_{DC} with Fe doping in our system with nominal stoichiometry was early explained by considering the electronic band structure of the material [22]. It is found that doping with Fe causes depletion in the number of hopping electrons and hence weakens the $Mn^{3+}-O-Mn^{4+}$ interaction, which suppresses metallicity and leads to a compound with a semiconductor behavior. In the literature, Jonker [33] studied the conductivity in the LaBaMnFeO₃ systems. Such study shows that the Fe³⁺, Mn^{3+} and Mn^{4+} ions are present when iron content does not exceed x=0.85.

Fig. 1. (a) Temperature dependence of the conductance G_{DC} of $Pr_{0.67}Ba_{0.33}Mn_{1-x}Fe_xO_3 \equiv PBMO-Fe.$ (b) Log ($G_{DC}T$) vs (1000/*T*). The inset is log (G_{DC}) vs ($T^{-1/4}$). (c) Variation of activation energy as a function of Fe concentration ($V_p = 0$ V).

For x > 0.85, Fe³⁺, Fe⁴⁺ and Mn⁴⁺ are present. Also, the investigation of physical properties of LaCaMnFeO₃ by Banks and Tshima [34] shows that hopping mechanism can occurs

Download English Version:

https://daneshyari.com/en/article/1515501

Download Persian Version:

https://daneshyari.com/article/1515501

Daneshyari.com