ELSEVIER



Contents lists available at ScienceDirect

## Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

# Local structure distortion models for $Cr^{3+}$ centers in $Tl_2MgF_4$ and $Tl_2ZnF_4$ fluorine compounds



## Muhammed Açıkgöz\*

Faculty of Engineering and Natural Sciences, Bahcesehir University, Beşiktaş 34353, İstanbul, Turkey

## ARTICLE INFO

## ABSTRACT

Article history: Received 4 June 2015 Received in revised form 28 September 2015 Accepted 3 October 2015 Available online 22 October 2015 Keywords:

A. Magnetic materials D. Magnetic properties

D. Crystal fields

D. Electron paramagnetic resonance (EPR)

Theoretical analysis of the EPR spectra of  $Cr^{3+}$  centers in  $Tl_2MgF_4$  ( $Tl_2MgF_4$  and  $Tl_2ZnF_4$ ) fluorine compounds have been carried out for the first time. The correlation between the experimental data and theoretical values regarding zero-field splitting (ZFS) provides suitable structural models to understand the local structure around the  $Cr^{3+}$  centers in  $Tl_2MgF_4$  and  $Tl_2ZnF_4$ . A clear compression of the MF<sub>6</sub> octahedron around tetragonal (TE)  $Cr^{3+}$  center has been shown in both crystals. The calculations for the monoclinic (MO)  $Cr^{3+}$  center reveal that the length of the four equatorial F-ligands ( $R_2$ ) is about 1.5% longer than that of the octahedral ZnF<sub>6</sub> in undoped  $Tl_2ZnF_4$  and the length of the axial F-ligands ( $R_1$ ) is quite shorter (~9.5%) than  $R_2$ . Also, it yields a quite large  $b_2^{-1}$  and declined angle (27.46°, ~30%) for z-axis. Our results indicate that the presence of the different structural formations may be considered around the orthorhombic (OR)  $Cr^{3+}$  center III and IV. It was suggested that the latter one can be attributed to an angular distortion relevant to the equatorial F-ligands  $z \parallel [110]$ -axis.

© 2015 Elsevier Ltd. All rights reserved.

## 1. Introduction

A<sub>2</sub>BF<sub>4</sub>-type layered perovskite-like crystals draw more attention of electron magnetic resonance (EMR) researchers due to their close relation to ABF<sub>3</sub>-type cubic perovskite crystals. It was experimentally observed that both group of crystals have various paramagnetic centers when they are doped with transition metal (TM) ions. EPR investigations of TM ion doped A<sub>2</sub>BF<sub>4</sub> crystals reveal more interesting results with various extra centers having some lower symmetry than those of ABF<sub>3</sub> crystals. Namely, in addition to the tetragonal (TE) and trigonal (TR) Cr<sup>3+</sup> centers formed in ABF<sub>3</sub> crystals, some orthorhombic (OR) and monoclinic (MO)  $Cr^{3+}$  centers have been found being formed in A<sub>2</sub>BF<sub>4</sub> crystals. In particular, previously published EPR data for Cr<sup>3+</sup> in  $Tl_2MgF_4$  ( $Tl_2MgF_4$  and  $Tl_2ZnF_4$ ) crystals have shown that the presence of four structurally different  $Cr^{3+}$  centers. In the paper [1], Arakawa et al. reported the results of their investigation on Cr<sup>3+</sup> doped Tl<sub>2</sub>ZnF<sub>4</sub>. Aside from the previously observed centers (center I and IV) [2], they also observed two new centers: a MO center (center II) and another OR center (center III). A vacancy at the nearest Tl<sup>+</sup> site was assigned to the Cr<sup>3+</sup> center II at the site of  $Zn^{2+}$  ion as a result of the spin-Hamiltonian separation (SHS) analysis, which is based on separating the second-rank ZFSPs (fine structure terms) into an uniaxial term along the crystalline *c*-axis

\* Fax: +90 212 3810300. E-mail address: muhammed.acikgoz@eng.bahcesehir.edu.tr and another uniaxial term along the crystalline *b*-axis [2].

It is known that paramagnetic impurity ions doped into  $A_2BF_4$ fluorides substitute for host  $B^{2+}$  cations and form paramagnetic impurity centers. When the impurity ions is a divalent  $M^{2+}$  such as  $Mn^{2+}$  and  $Ni^{2+}$ , there is no need for a charge compensator, however, when a trivalent impurity ion such as Cr<sup>3+</sup> and Fe<sup>3+</sup> substitute for host divalent cation ion this situation is associated with a charge compensator for local charge neutrality. Based on the local charge compensation around the divalent sites after Cr<sup>3+</sup> substitution it is possible to consider some different formations for the TE and TR centers in ABF<sub>3</sub> crystals. One of them is the  $Cr^{3+}-Li^+$  center, where  $Li^+$  ion at the nearest  $B^{2+}$  site compensates the excess monovalent positive charge on  $Cr^{3+}$  ion [3]. The other one is the  $Cr^{3+}-V_A$  center, where a vacancy at the nearest  $A^+$  site occurs [4]. Even, through the creation of a  $B^{2+}$  vacancy at the nearest  $B^{2+}$  site, the formation of the  $Cr^{3+}-V_B$  center was also reported with an overcompensation of the positive charge on Cr<sup>3+</sup> by the B<sup>2+</sup> vacancy [5]. Similar various structural formations were reported for Cr<sup>3+</sup> doped A<sub>2</sub>BF<sub>4</sub> crystals even with low symmetry centers.

For not only the confirmation of the experimental observations but also to better understand the structural mechanism around the TM ion centers, a theoretical analysis is required. Nevertheless, no theoretical investigation of  $Cr^{3+}$  centers in  $Tl_2MF_4$  crystals has been done yet. Thus, in this study, we have investigated theoretically the  $Cr^{3+}$  centers in  $Tl_2MgF_4$  and  $Tl_2ZnF_4$  crystals by means of semi-empirical calculations using superposition model (SPM), see, e.g. the papers [6,7] for the successful applications of this model on  $Cr^{3+}$  ion doped systems. Based on the correlation between the crystallographic and EPR data we have carried out the modeling of the zero-field splitting (ZFS) parameters (ZFSPs) for all of the observed  $Cr^{3+}$  centers and have enabled to determine the local structure of  $[Cr-F_6]^{3-}$  clusters through various modeling approaches.

### 2. Method for calculations

Experimental spectra of  $Cr^{3+}$  doped  $Tl_2MgF_4$  and  $Tl_2ZnF_4$  crystals can be analyzed by utilizing the spin Hamiltonian, suitable for the spin S=3/2 systems, consisting of the Zeeman electronic terms and the ZFS terms [8,9,10]:

$$H = H_{Ze} + H_{ZFS} = \mu_B \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S} + \sum B_k^q O_k^q = \mu_B \mathbf{B} \cdot \mathbf{g} \cdot \mathbf{S} + \sum f_k b_k^q O_k^q$$
(1)

where  $\mu_B$  is the Bohr magneton, **B** is the applied magnetic field, g is the spectroscopic splitting factor, *S* is the effective spin operator, and  $B_k^q$  (or  $b_k^q$ ) are ZFSPs associated with the extended Stevens operators  $O_k^q$ , whereas  $f_k = 1/3$ , and 1/60 are the scaling factors for k=2, and 4, respectively [11,12].

Explicit form of the ZFS term in Eq. (1) can be written for each symmetry case [13–15]. ZFS of a  $d^3$  configuration  $Cr^{3+}$  center with TE symmetry can be analyzed by the following explicit expression of the spin-Hamiltonian:

$$H_{ZFS} = \frac{1}{3}b_2^0 O_2^0 = \frac{1}{3}D\left(S_z^2 - \frac{1}{3}S(S+1)\right)$$
(2)

For the  $Cr^{3+}$  centers with MO symmetry, for which only one symmetry axis  $C_2$  exists, can be represented by the following  $H_{ZFS}$  s:

$$H_{ZFS} = \frac{1}{3}(b_2^0 O_2^0 + b_2^{-1} O_2^0 + b_2^2 O_2^0)$$
(3a)

$$H_{ZFS} = \frac{1}{3} (b_2^0 O_2^0 + b_2^{-2} O_2^0 + b_2^2 O_2^0)$$
(3b)

$$H_{ZFS} = \frac{1}{3} (b_2^0 O_2^0 + b_2^1 O_2^0 + b_2^2 O_2^0)$$
(3c)

which differ with respect to the choice of the MO direction, i.e.  $C_2 \parallel X$ -axis (Eq.(3a)),  $C_2 \parallel Z$ -axis (Eq.(3b)), and  $C_2 \parallel Y$ -axis (Eq.(3c)). On the other hand, for Cr<sup>3+</sup> center with OR symmetry we can use  $H_{ZFS}$  as:

$$H_{ZFS} = \frac{1}{3}(b_2^0 O_2^0 + b_2^2 O_2^2) = \frac{1}{3}D\left(S_z^2 - \frac{1}{3}S(S+1)\right) + E(S_x^2 - S_y^2)$$
(4)

In general, following the general definitions for the SPM quantities outlined recently in [16,17], the ZFSPs can be expressed as

$$b_k^q = \sum_i \bar{b}_k(R_i) \cdot K_k^q(\theta_i, \varphi_i)$$
<sup>(5)</sup>

where  $K_k^q(\theta_i, \phi_i)$  are the coordination factors [18] as functions of the position angles  $\theta_i$  and  $\phi_i$  of ligands. The intrinsic parameters (IPs)  $\bar{b}_k(R_i)$  are assumed to obey the following power law:

$$\bar{b}_k(R_i) = \bar{b}_k(R_0) \left(\frac{R_0}{R_i}\right)^{t_k} \tag{6}$$

where  $R_0$  is the reference distance,  $R_i$  are the ligand distances in the ML<sub>6</sub> complex;  $\bar{b}_k(R_0)$  is the intrinsic parameter, whereas  $t_k$  is the power law exponent which are treated as adjustable parameters. The  $\bar{b}_k(R_0)$ ,  $t_k$ , and the reference distance  $R_0$  can be included into a combined set, which is known as SPM parameter set for SPM applications [19]. Only one data set [20] of the model parameters, i.e.  $\overline{b_k}(R_0)$  and  $t_k$  with  $R_0$ , suitable for the ligand system of the  $Cr^{3+}-F^-$  bond configuration, exists in literature. These are:  $\overline{b_2}(R_0) = (46770 \pm 800) \times 10^{-4} \text{ cm}^{-1}$  and  $t_2 = -0.24 \pm 0.03$  with  $R_0 = 0.2113$  nm.

SPM provides the following general expressions for ZFSPs for the  $Cr^{3+}$  centers in 6-fold coordination in terms of IPs:

$$b_2^0 = D = \frac{\bar{b}_2(R_0)}{2} \sum_{i=1}^n \left(\frac{R_0}{R_i}\right)^{t_2} (3\cos^2\theta_i - 1)$$
(7)

$$b_2^{-1} = 3\bar{b}_2(R_0) \sum_{i=1}^n \left(\frac{R_0}{R_i}\right)^{t_2} \sin 2\theta_i \sin \phi_i$$
(8)

$$b_2^2 = 3E = \frac{3\bar{b}_2(R_0)}{2} \sum_{i=1}^n \left(\frac{R_0}{R_i}\right)^{t_2} \sin^2\theta_i \cos 2\phi_i$$
(9)

Here we provide the expression for only ZFSP  $b_2^{-1}$  regarding the MO direction  $C_2 || X$ -axis. Indeed, as mentioned above, depending on the choice of the  $C_2$  direction, we may have  $b_2^{-2}$  or  $b_2^{1}$  instead of  $b_2^{-1}$  for choosing  $C_2 || Z$ -axis or  $C_2 || Y$ -axis, respectively.

### 3. Results and discussion

The presence of TE center I and OR center IV in Tl<sub>2</sub>MgF<sub>4</sub> [2] whereas TE center I, MO center II, and OR centers III and IV in Tl<sub>2</sub>ZnF<sub>4</sub> [1] crystals are known experimentally. The types of Cr<sup>3+</sup> centers present in Tl<sub>2</sub>MF<sub>4</sub> crystals and values of the previously determined experimental ZFSPs ( $D=b_2^0$  and  $3E=b_2^2$ ) for them are tabulated in Table 1. It should be noted that the values of the ZFSP  $D=b_2^0$  in Tl<sub>2</sub>MgF<sub>4</sub> and Tl<sub>2</sub>ZnF<sub>4</sub> are rather higher than those in other A<sub>2</sub>BF<sub>4</sub> crystals, even  $D=b_2^0$  of the TE Cr<sup>3+</sup> center is almost three times of that in K<sub>2</sub>ZnF<sub>4</sub> ( $-381.0 \times 10^{-4}$  cm<sup>-1</sup> [1]) and Rb<sub>2</sub>ZnF<sub>4</sub> ( $-369.0 \times 10^{-4}$  cm<sup>-1</sup> [21]). Furthermore, it is worth noting that the rhombicity ratio  $\lambda$ =E/D measuring the deviation from axial symmetry for the OR and MO centers is much higher in these crystals. Even, it is 0.71 and 0.77 for OR center IV in Tl<sub>2</sub>MgF<sub>4</sub> and Tl<sub>2</sub>ZnF<sub>4</sub>, respectively. Normally, the ratio  $\lambda$  yields  $0 \le \lambda = E/D \le 1/3$  [22].

In SPM analyses, it is pertinent to know metal-ligand (M–F) distances for an appropriate prediction of the local structure distortion around the  $Cr^{3+}$  centers. For  $Tl_2MF_4$  crystals, there is no report about the host structure of  $Mg^{2+}$  and  $Zn^{2+}$  ions in terms of local structure parameters. However, it is known that the site of the binary cations  $Mg^{2+}$  and  $Zn^{2+}$  is exactly at the center of the unit-cell of  $Tl_2MgF_4$  and  $Tl_2ZnF_4$  crystals. The separation between two equatorial F-ligands (F–Mg/Zn–F distance:  $R_2$ ) coincides with the unit-cell parameter a, which means a/2 equals to  $R_2$ . The TE

#### Table 1

The values of the previously determined experimental ZFSPs [in  $10^{-4}\,cm^{-1}]$  for various  $Cr^{3+}$  centers in  $Tl_2MF_4$  crystals.

| Compounds                        | Center   | $D = b_2^0$ | $3E = b_2^2$ | Refs |
|----------------------------------|----------|-------------|--------------|------|
| Tl <sub>2</sub> MgF <sub>4</sub> | I (TE)   | - 1041.7    | -            | [2]  |
|                                  | IV (OR)  | 843.6       | 598.0        | [2]  |
| Tl <sub>2</sub> ZnF <sub>4</sub> | I (TE)   | - 866.1     | -            | [2]  |
|                                  | II (MO)  | - 1507.9    | - 706.1      | [1]  |
|                                  | III (OR) | 924.5       | - 156.0      | [1]  |
|                                  | IV (OR)  | 684.6       | 529.0        | [2]  |

Download English Version:

https://daneshyari.com/en/article/1515511

Download Persian Version:

https://daneshyari.com/article/1515511

Daneshyari.com