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a b s t r a c t

Standardization methods of low symmetry – orthorhombic, monoclinic and triclinic – crystal fields are
formulated and discussed. Two alternative approaches are presented, the conventional one, based on the
second-rank parameters and the standardization based on the fourth-rank parameters. Mainly f-electron
systems are considered but some guidelines for d-electron systems and the spin Hamiltonian describing the
zero-field splitting are given. The discussion focuses on premises for choosing the most suitable method, in
particular on inadequacy of the conventional one. Few examples from the literature illustrate this situation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The minimal expansion of the crystal field potential in terms of
the tensor operators commonly used in the phenomenological
modeling is not unique because of freedom in choosing the
nominal coordinate system, implying different but equivalent sets
of the coefficients of the expansion – the CF parameters. In the
case of no symmetry elements apart from the inversion (i.e. for C1
and S1) and the symmetries which favor only one direction (i.e. Cn,
Snh, and Sn), there is infinite number of equivalent orientations. For
the remaining point groups the number of equivalent minimal
settings is finite. In each case, the phenomenological Hamiltonian
requires a standardization, i.e. a convention according to which the
nominal coordinate system is chosen.

Initially, the problem of the standardization did not focus much
attention. The symmetry descent techniques or simplified models
based on so-called intrinsic parameters (see [1,2] and references
therein) allowed one to overcome it in most cases. In the last
decades, however, a group of materials has been rapidly growing
for which these techniques appear insufficient. Present research
based on the spectroscopic, neutron, resonant, magnetic, thermal,
transport and other measurements provide important details of
the electronic structure which cannot be reproduced reliably
without referring to the actual symmetry and the general
parameterization.

The standardization was introduced originally as a convention
for selecting the principal directions in description of zero field
splitting observed in EPR spectra [3,4]. It was noticed that six
equivalent orientations of the coordinate system in the case of

orthorhombic symmetry were related to different ranges of the
rhombicity – the ratio of the two parameters describing the
quadrupole footprint on the EPR recordings. In 1985 this idea was
extended by Rudowicz and Bramley to general spin Hamiltonian
containing terms of higher rank as well as to the crystal field
Hamiltonian of that symmetry [5]. Later, Rudowicz and coworkers
extended the standardization to monoclinic [6] and triclinic [7]
symmetries and proved its usefulness processing an amount of
literature data (see Ref. [8] and references therein).

The Rudowicz and Bramley standardization (RBS) is based on
the second-rank CF parameters. Below we will see that this ap-
proach can be misleading in some cases. Alternative standardiza-
tion scheme presented here bases on the fourth-rank parameters.
It allows one to avoid the pitfalls of RBS on the one hand but re-
quires to handle adversely increased number of equivalent settings
of the parameters on the other. Nevertheless there are still ma-
terials and experimental data for which RBS remains correct. We
present both the methods as unified procedures for the three
crystallographic systems: orthorhombic, monoclinic and triclinic.
Apart from the crystal field Hamiltonian for f-electron systems,
they can be applied also to d-electron systems and the spin Ha-
miltonian [9]. The methods are illustrated by examples of the CF
parameters reported for realistic materials.

2. Low symmetry crystal field Hamiltonian

The conventional expansion of the crystal field (CF) potential

into the normalized spherical harmonics C rr( / )q

k( )^ in the Hilbert
space restricted to the single configuration fN (or dN), where N is
the number of f (d) electrons, includes components of second,
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The three axial CF parameters, Bk0 (k¼2,4,6), are real, whereas the
remaining 24 non-axial ones, Bkq (q k k, 1, 1= − ‥ − … ) are com-
plex and conjugated according to the Condon–Shortley phase
convention [10]:

B B( 1) (3)kq
q

k q= −⋆
−

to ensure hermiticity of the Hamiltonian. The six-rank terms are
ineffective in the case of the d-electrons and the expansion is re-
duced to 14 terms. Generally, the 27(14) parameters in (1) are not
independent. The redundant parameters can be eliminated by
appropriate choice of the coordinate system. Following Rudowicz
[11] we call it the symmetry-adapted axis system (SAAS).

If no direction is distinguished as for the triclinic symmetries (C1
and S Ci2 ≡ point groups) any orientation of the coordinate system
is possible and equally good. In particular it can be chosen so as to
eliminate any three of 27 parameters except for the three axial
parameters. This restriction results from the fact that there is no
rotation dependent on only two Euler angles that would eliminate
three CF parameters. In other words any selection of 24 parameters,
containing one axial parameter at least, is admissible. There is no
restriction in selection of the 11 parameters from 14 ones for d-
electron system. The monoclinic symmetry (C2, Ch and C h2 ) reduces
the number of parameters to 15 (8 in the case of d-electrons) if any
axis of the coordinate system coincides with the symmetry axis.
Freedom in orientation of the two remaining axes allows us to
eliminate one of these 15 parameters. Thus, the minimal set is re-
duced to 14(7). For the orthorhombic points groups (D h2 , D2, and
C2v) SAAS leaves 9(5) independent parameters as the minimal set.
These are the real components of Bkq with q even.

The relations between the parameters Bkq in the original and
rotated coordinate frames are determined by the transformation
properties of the spherical harmonics under rotation. The trans-
formation matrices can be obtained from analytic formulas given
for instance in Refs. [12,13] or generated numerically [14–16]. They
can be easily adapted to various forms of the CF Hamiltonian and
function bases as well as to the general spin Hamiltonian de-
scribing the zero-field splitting [17,12,6].

The rotation does not mix the CF components of different k and
for each k it preserves the length Bk of the “vector” of the para-
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The length of the vector is proportional to the quadratic rotational
invariant sk:
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which can be determined directly from the crystal field transitions
observed experimentally [18–20].

The experimental data, especially those provided by optical spec-
troscopy, are, in principle, capable to determine even as large number
of CF parameters (CFP) as 24 (cf. Ref. [21]). However, one first has to

choose 24 parameters from 27 and second, indicate one from several
different sets of the 24 parameters which represent given crystal field
energy levels sequence. Equivalent CFP settings also exist for higher
than triclinic symmetries. In other words, there are always several
equivalent SAAS and the corresponding different sets of the para-
meters. These ambiguities are well known in the case of higher
symmetries [22,1,2] – for example the simultaneous inversion of the
signs of the B44 and B64 parameters in the case of the cubic symmetry.

The following rotations play a special role since they maintain
the minimal number of CF parameters, i.e. keep the Hamiltonian in
SAAS regardless an actual site symmetry:

R Oy B: ( /2)/ : ( ) (6a)kq1
(0, /2,0)

π → ⋯
π

R B B: ( )/Oy: (6b)2 kq
(0, ,0)

kqπ → *π

R Oz B i B: ( /2)/ : ( ) (6c)kq
q

kq3
( /2,0,0)

π →
π

R Oz B B: ( )/ : ( 1) (6d)kq
q

kq4
( ,0,0)

π → −
π

The arrows in (6) are labeled with the corresponding Euler angles,
(⋯) means nontrivial linear combination of Bkq's which can be
found in [12].

Usually we are dealing with various sets of the parameters for
the same or isostructural compounds or for series of metal ions
doped in given matrix. We will need to compare them taking into
account various forms of SAAS including those generated by above
rotations. Thus we need a measure of similarity of two sets of the
parameters. For this purpose we will use the closeness factors CABk ,
defined by Rudowicz [11] as

c
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where A and B denote two different sets of CF parameters which are
to be compared. The global closeness factor cAB constructed in similar

way from the “vectors” B
→

of all CF parameters may also be useful:
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All these quantities cABk and cAB vary in the range of (0, 1): zero
means no correlation, one – the identical sets of the parameters. If
fitting errors are known then the closeness factors could be re-
defined to account for corresponding weights.

3. Following the Rudowicz and Bramley standardization (RBS)

The standardization can be formulated on the ground of the
theory of little groups which allows one to foresee non-trivial
symmetries of the irreducible representations of the rotation
group and its finite subgroups [23]. It stems from the fact that the
efficient symmetry of a part of the Hamiltonian transforming ac-
cording to a given representation of the rotation group may be
higher than the site symmetry, if the latter is low enough. In such a
case the number of independent parameters describing the system
is lower than the site symmetry implies. In order to eliminate the
redundant parameters suffice to set the coordinate system ap-
propriately, taking into account the corresponding little subgroup.

In particular, the second-rank term in the crystal field expansion V2̂

transform according to the subgroup D2 of the representation D(2)

of the rotation group. Therefore without loss of generality all the

parameters except B20 and RB22 can be set to zero in V2̂, no matter
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