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In the present study contact between elastic-ideally plastic dissimilar spheres are investigated in detail.
The investigation is based on numerical methods and in particular the finite element method. The nu-
merical results presented are discussed with respect to correlation of global contact properties as well as
the behavior of local field variables such as contact pressure distribution and the evolution of the ef-
fective plastic strain. Large deformation effects are accounted for and discussed in detail. The constitutive
behavior is described by classical Mises plasticity. It is shown that correlation of the dissimilar contact
problem can be accurately achieved based on the Johnson contact parameter with the representative
stress chosen as the yield stress of the softer material.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is of great importance in many technical applications to study
the mechanical behavior when two or more bodies come in con-
tact with each other. Examples of such applications include gears,
rollers and bearings. Contact often gives rise to high stress con-
centrations which in turn can lead to plastic deformation and/or
cracking, or crack growth. The load-bearing capacity of a structure
can then be reduced significantly. Another area where knowledge
of contact mechanics is of significant importance is in case of in-
dentation or hardness test. In such an experiment the constitutive
properties of the material are determined from an impression in
the form of a ball, flat punch or pyramid, which is pressed into the
material and quantities like hardness, defined here as the average
contact pressure, and contact area are measured.

Most often, an advanced contact mechanics analysis is needed
in order to interpret the results from an indentation test and also
to understand the other contact problems mentioned above. Ar-
guably, contact mechanics as a particular subject within solid
mechanics started with the famous analysis by Hertz [ 1] where the
problem of contact between two (locally) spherical glass lenses
was studied based on the assumption of predominantly elastic
deformations. After that, contact mechanics have reached quite a
maturity as a research subject and attracted a considerable
amount of attention from numerous researchers all over the
world. It seems pretentious to make a complete overview of the
subject in this context and for this reason, only the classical
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contributions by Tabor [2] and Johnson [3,4] should be mentioned
here.

Depending on the material properties and the type of indenter
used, Johnson [3,4] suggested that the outcome of an indentation
test on classical elastoplastic materials could be placed in one of
three levels as specified by the parameter

Etanp

A= P
(1- Vz)Urep (1)

where E is Young's modulus and v is Poisson's ratio, /3 is the angle
between a sharp indenter and the undeformed surface while for a
ball indenter tan ~(a/R) with a being the radius of the contact
area and R the radius of the indenter. Furthermore, o, is the
material flow stress at a representative value of the effective (ac-
cumulated) plastic strain &p. As for the three indentation levels,
schematically shown in Fig. 1, Level I, A <3, corresponds to the
occurrence of very little plastic deformation during indentation
testing, meaning that all global properties can be derived from an
elastic analysis. In level II, 3 <A <30, an increasing amount of
plastic deformation is present and both the elastic and plastic
properties of the material will influence the outcome of the test. It
was shown by Johnson [3,4] that in this region, the material
hardness H, here and in the sequel defined as the average contact
pressure, relates to A as

H_ InA
Orep (2)

Finally, in level III, A > 30, plastic deformation is present over the
entire contact area. The last mentioned level is applicable to most
engineering metals at high or moderate loading. From a number of
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Fig. 1. Normalized hardness, H/s ., as a function of In A, A defined according to Eq.
(1). Schematic of the correlation of indentation testing of elastic—plastic materials
as suggested by Johnson [3,4]. The three levels of indentation responses, I, Il and III,
are also indicated.

tests performed on different materials pertinent to level III, Tabor
[2] concluded that a simple formula relating hardness H, flow
stress and a constant, dependent on the geometry of the indenter,
could be derived according to

H= CO'rep (3)

It should be immediately emphasized that the indentation results
above can also be used for analyzing more general contact pro-
blems between two bodies if the quantities

1_1—y%+1-y§

E K E; (4)
and

1_1.1

R+ R] Rz (5)

are introduced as effective measures of elastic stiffness, E*, and
radius of curvature, R*. Material constants and (local) radius of
curvature indexed 1 and 2 refers to the properties pertinent to
each individual body. The generalization in Eq. (4) and in Eq. (5)
was first suggested in Hertz' original article [1] at elastic (level I)
contact but is applicable, within good accuracy, also at evolving
plastic deformation (level II and level III), cf. e.g. [4-8]. Naturally,
when plasticity is present also the plastic constitutive properties
have to be generalized. It was suggested by Stordkers et al. [5] that
in case of rigid plasticity, with power law strain hardening
described by the relation

o= kellm, (6)

where k and m are material constants and m— oo represents ide-
ally plastic behavior, the generalization

1 1 1

K kg (7)
applies at level Il spherical contact problems. It should be noted in
passing that a corresponding generalization scheme does not exist
for sharp contact problems, as discussed in detail in [9]

When it comes to generalization, or correlation, in the context
of arep, much knowledge has also been gained. In this case, sharp
contact problems are well understood as it has been shown; cf. e.g.
Larsson [10,11], that high accuracy correlation can be achieved in a
general situation by using two-parameter descriptions of g, also
accounting for strain-hardening. Regarding the latter feature, in
some studies, cf. e.g. [12,13] also the initial yield stress has been
used to correlate sharp indentation yielding less accurate results.
Basically the same type of investigations has been applied to
spherical contact problems, cf. e.g. [5-7,14-16] but the overall
characteristics of the problem were not fully understood until
Olsson and Larsson [17] presented formulae for a general corre-
lation of global contact properties at, in particular, elastic-plastic

(level II) spherical contact problems. In [17], the representative
stress was determined at a strain value

erep = 0.2/R, (8)

as previously suggested in [5,14,15], and high accuracy results
were obtained correlating indentation results and, based on the
generalization quantities discussed above, also general spherical
contact problems.

With the above mentioned, it is clear that spherical (and sharp)
contact problems are nowadays fairly well understood. However, with
this understanding follows the insight that there are additional pro-
blems that need to be investigated further. One of these problems of
substantial practical importance concerns the case of spherical contact
between dissimilar materials. This is particular so when level IIl con-
tact problems are at issue. In such a case the material hardness
(average contact pressure) is determined from Eq. (3) and if ideally
plastic or low hardening materials are considered then

Orep = Oy, (9)

gy being the yield stress of the elastic-ideally plastic material.
Clearly, if the two materials are dissimilar at particle-particle
contact, see Fig. 2, with different yield stress equilibrium is not
possible at strictly level Il conditions. This matter was implicitly
discussed by Martin and Bouvard [18] but only in the context of
definition of ¢rep and it was suggested that

orep = Min(oy1, oy2), (10)

should be used in this situation. However, no further discussion
about the implications for the mechanical behavior was presented.
Indeed, to the authors' knowledge, this problem has not been
discussed in detail previously in the literature and it is the in-
tention here to remedy this shortcoming.

In doing so, the spherical contact problem depicted in Fig. 2
will be extensively investigated using the finite element method.
The investigation is purely a numerical one based on the fact that a
full understanding of the mechanics involved is aimed at and it is
then of utmost importance to be able to tailor the constitutive
behavior of the materials in contact in order to be able to describe
different features in an accurate manner also accounting for large
deformations. The analysis is founded on classical Mises elasto-
plasticity assuming, based on the discussion above, ideally plastic
behavior. An extension of the results to more general contact
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Fig. 2. Schematic of the spherical contact problem.
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