Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

EPR, ENDOR and optical spectroscopy of Yb^{3+} ion in $KZnF_3$ single crystals

M.L. Falin^{a,*}, K.I. Gerasimov^{a,b}, V.A. Latypov^a, A.M. Leushin^b, S. Schweizer^c, J.-M. Spaeth^d

^a Kazan Zavoisky Physical-Technical Institute, 420029 Kazan, Russian Federation

^b Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation

^c South Westphalia University of Applied Sciences, Department of Electrical Engineering, 59494 Soest, Germany

^d University of Paderborn, Department of Physics, 33098 Paderborn, Germany

ARTICLE INFO

Article history: Received 1 August 2014 Received in revised form 30 September 2014 Accepted 6 October 2014 Available online 30 October 2014

Keywords:

D. Crystal structure D. Electron paramagnetic resonance (EPR)

D. Magnetic properties

D. Optical properties

ABSTRACT

The paramagnetic center of tetragonal symmetry formed by the Yb^{3+} ion in the $KZnF_3$ crystal has been studied using methods of EPR, ENDOR and optical spectroscopy. The location of the impurity ion and the structural model of the complex differing from the model of the Yb^{3+} center in $KMgF_3$ have been established. The empirical scheme of the energy levels of the Yb^{3+} ion has been found. The parameters of its interaction with the crystal electrostatic field and the hyperfine interaction with ligands of the nearest environment have been determined. The parameters of the crystal field were used for the analysis of the distortions of the crystal lattice in the vicinity of Yb^{3+} . The parameters of the transferred hyperfine interaction have been calculated for the distances between Yb^{3+} and F^- ions of the nearest environment obtained taking into account the found distortions. They are in good agreement with the experimental values.

© 2014 Published by Elsevier Ltd.

1. Introduction

The composition of crystals of double fluorides ($Me^{t}Me^{2+}F_{3}^{-}$) with the perovskite-type structure is more complicated than that of, e.g., widely used matrices of the homologous series of fluorite ($Me^{2+}F_{2}^{-}$). The high cubic symmetry and a wide variety of physicochemical properties make the study of impurity crystals of double fluorides interesting both from the theoretical and practical point of view.

Using rare-earth (RE) elements as probes makes perovskites useful subjects for studying the behavior of RE ions located in two different positions in the crystal: either in the a-type sites in the environment of the octahedron of six fluorine ions or in b-type sites in the coordination of the same 12 ligands.

However, the introduction of trivalent RE ions in perovskite structures is hampered, on the one hand, by the considerable difference of sizes of RE ions and lattice cations, and on the other hand, by the ion valence of the substitution.

In [1] we presented the results of the detailed study of the tetragonal paramagnetic center of the Yb^{3+} ion in the KMgF₃ crystal using electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR) and optical spectroscopy. These results showed conclusively that the tetragonal center is

* Corresponding author. Fax: +7 843 272 50 75. *E-mail address:* falin@kfti.knc.ru (M.L. Falin).

http://dx.doi.org/10.1016/j.jpcs.2014.10.005 0022-3697/© 2014 Published by Elsevier Ltd. formed during the incorporation of Yb³⁺ in the octahedral positions of Mg²⁺ ions, and not as a result of substituting univalent K⁺ ions surrounded by 12 fluorine ions, as it was supposed earlier in [2,3]. The excessive positive charge is compensated by the nonmagnetic oxygen ion O²⁻, which substitutes one of fluorine ions in the octahedron of the nearest environment of the Yb³⁺ ion. One could expect that a similar center would exist in the KZnF₃ crystal, the structural parameters of which ($a_o^{KZnF_3}=0.4040$ nm) almost coincide with those of the KMgF₃ crystal ($a_o^{KMgF_3}=0.3987$ nm). However, this is not the case in reality. It was found that the tetragonal symmetry center of the Yb³⁺ ion in KZnF₃ is formed only upon doping with YbF₃ fluoride and metal lithium. In this work we present the results of the experimental and theoretical study of such Yb³⁺ ion centers in the KZnF₃ crystal using methods of EPR, ENDOR and optical spectroscopy.

2. Experimental results

Samples KZnF₃:Yb were grown using the Bridgman–Stockbarger method in graphite crucibles in fluorine atmosphere. Crystals were activated by introducing 0.5-1.5 wt% YbF₃ in the charge with the addition of metallic lithium in specific cases. EPR and ENDOR experiments were carried out on modified X-band (9.5 GHz) ERS-231 (Germany) [4] and custom-built EPR/ENDOR X-band spectrometers (see, e.g., [5]) at the temperatures of 4.2 and

Fig. 1. ENDOR spectrum of Yb³⁺ (T_{tet}) in KZnF₃ at $H \parallel C_4$. The positions of the Larmor frequency of lithium and fluorine are denoted by arrows. H=725 mT (g_{\parallel} =0.922), T=4.2 K.

6-8 K, and optical spectra were measured on a home-built multifunctional optical spectrometer [6] at 2, 77 and 300 K. Three types of the paramagnetic center Yb^{3+} located in the structurally non-equivalent positions were singled out in KZnF₃:Yb³⁺ (T_{cub}) of the cubic symmetry, Yb³⁺ (T_{trig}) consisting of four magnetically non-equivalent complexes of the trigonal symmetry, and Yb³⁺ (T_{tet}) consisting of three magnetically non-equivalent complexes of the tetragonal symmetry. As it was noted above, Yb^{3+} (T_{tet}) in KZnF₃, in contrast to KMgF₃ [1], is formed only, when metallic lithium is introduced into the charge. The ENDOR spectrum of Yb^{3+} (T_{tet}) showed lines, which were identified as lines of fluorine and lithium ions (Fig. 1). The intensity of the ENDOR lines has the maximum value, when the constant magnetic field H is directed along the main crystallographic directions of the crystal, and decreases considerably at the deviation from them. The angular dependence of the ENDOR spectra in the (001) plane was studied in order to exactly identify the ENDOR lines according to their belonging to certain F⁻ and Li⁺. Fig. 2 shows the plot of the angular dependence of these lines. It was established from the angular dependence of the ENDOR lines that Yb^{3+} is in the center of a regular octahedron, i.e., substitutes Zn²⁺, and the local compensation of the additional positive charge is performed by the replacement of one of the Zn^{2+} ions of the nearest environment by a lithium ion. The inset in Fig. 2 shows a fragment of the crystal lattice KZnF₃ with positions of the interstitial ion and ion-compensator. The complex $[YbF_6]^{3-}$ is characterized by the symmetry C_{4v} and the absence of an inversion center. The local symmetry of $F_{1,6}$ and Li^+ ions is C_{4v} , and that of each of $F_{2,3,4,5}$ ions is C_s . The spin Hamiltonian of the described system has the form:

$$\mathcal{H} = g\beta \mathbf{HS} + \sum_{i} \left(\mathbf{S} A_m^{(i)} \mathbf{I}^{(i)} - g_n^{(i)} \beta_n \mathbf{HI}^{(i)} \right), \tag{1}$$

where $S=I^F=1/2$, $I^{7Li}=3/2$, $g_n=5.525454$ (2.1707) for ${}^{19}F^{-}$ (⁷Li), $A_m^{(i)}$ is the five-component tensor of the transferred hyperfine interaction (THFI) for $F_{2,3,4,5}$ and two-component tensor for $F_{1,6}$ and Li, *i* labels the ligands, *m* labels the tensor components (1–5). Since the quadrupole moment of Li is small ($Q \sim 0$) and the coupling between Li⁺ and Yb³⁺ is mainly due to the dipole–dipole interaction, instead of six ENDOR lines (sum and difference ENDOR lithium lines) only two are observed. Expressions for the frequencies of the ENDOR transitions are similar to those, which were used in ENDOR experiments of the tetragonal Yb³ center in KMgF₃ [1].

Experimental values of the THFI parameters are given in Table 1. The obtained THFI parameters are compared with the

Fig. 2. Angular dependence of ENDOR lines of fluorine and lithium ions for Yb³⁺ (T_{tet}) in KZnF₃ during the rotation of the magnetic field *H* in the (001) plane. ν =9.355 GHz, *T*=4.2 K. • – experimental points; 1–6 – numbering of F⁻ ions corresponding to the notations in the inset; calculated lines: solid and dashed (summary and difference ENDOR frequencies, respectively) on the basis of data in Table 1, dash-dotted – Larmor frequencies of ¹⁹F and ⁷Li nuclei. Inset – structural model of Yb³⁺ (T_{tet}).

parameters of cubic centers [7] in the following manner. It is known that $\hat{B} = (h/\hat{g}\beta)\hat{A}$ is a true tensor unlike \hat{A} , and that any asymmetric second-rank tensor can be decomposed into a symmetric and asymmetric parts. Using corresponding transformations, from the symmetric part one can single out a part called in the following $B_s = (1/3)(hA_1/g_{\perp}\beta + hA_2/g_{\perp}\beta + hA_3/g_{\parallel}\beta)$ which represents the isotropic (purely covalent regardless of the dipoledipole interaction) contribution to the THFI. When comparing the B_s values from the three sets of F_1 , F_6 and F_{2-5} with the corresponding B_s from the cubic center Yb³⁺ (Table 1), it is seen that the parameters of F_{2-5} ions almost coincide with the purely covalent contribution (with distances due to the deformation) of

Table 1

Experimental values of the THFI parameters $A_m^{(i)}(\text{in MHz})$ and B_s (in 10⁻⁴ T) of the Yb³⁺ ion with the first fluorine shell and the Li ion in KZnF₃. 1–6 – F⁻ labels corresponding to the notations in the structural model of KZnF₃ (Fig. 1). The results for the cubic Yb³⁺ center in KZnF₃ [7] are given for comparison.

	Tetragonal				Cubic
	F ²⁻⁵	F^1	F ⁶	Li ⁺	F^{1-6}
A ₁ A ₂	29.80 (3) 3.63 (3)	47.05 (2)	34.53 (2)	0.730 (10)	29.030
A_3 A_4	16.42 (3) 0.9 (1)	36.64 (2)	30.52 (2)	-0.305 (10)	11.136
A5 Bs	0.9 (1) 6.53	15.90	12.61	0.02	6.38

Download English Version:

https://daneshyari.com/en/article/1515611

Download Persian Version:

https://daneshyari.com/article/1515611

Daneshyari.com