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a b s t r a c t

We have performed Linearized Augmented Plane Wave (LAPW) calculations for five crystal structures
(alpha, dhcp, sc, fcc, bcc) of Boron which we then fitted to a non-orthogonal tight-binding model
following the Naval Research Laboratory Tight-Binding (NRL-TB) method. The predictions of the NRL-TB
approach for complicated Boron structures such as R105 (or β-rhombohedral) and T190 are in agreement
with recent first‐principles calculations. Fully utilizing the computational speed of the NRL-TB method
we calculated the energy differences of various structures, including those containing vacancies using
supercells with up to 5000 atoms.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Boron is of interest in materials science because it has at least
16 allotropes, making it one of the most structurally complex
elements known [1]. Determining the ground state structure of
Boron has been difficult, providing another source of motivation
for pursuing research of this element. However, it appears that in
recent years the uncertainty about the ground structure of Boron
may have begun shrinking.

In 2008, Widom and Mihalkovič determined that the slightly
disordered β-rhombohedral (R105) structure is actually Boron's
true ground state, as opposed to the α-rhombohedral (R12)
structure [2]. They performed an optimization of the occupancy
configurations of the R105 structure; however all possible config-
urations were not included. VASP was used with the Local Density
Approximation (LDA), as well as the Generalized Gradient Approx-
imation (GGA)-based Ultrasoft Pseudopotential (USPP), and HARD
potentials. R105 was found to be lower in energy than R12 using
USPP and HARD, but not LDA. Zero-point energy was not included
in the calculations, although they state that zero-point energy
would make R105 even more stable. Setten et al. found that R105
Boron is above R12 in energy unless zero-point energy is included
[3]. There are crystallographic refinements of R105 Boron without
any vacancies [4], but they do not reach the true ground state.

In a 2009 paper, Ogitsu et al. also found that R105 Boron is
lower than the R12 structure after performing a full optimization

of its occupancy configurations using a 1280 atom supercell [5].
Due to the very large number of possible occupancy configurations
of the structure, only a small number of first principles calcula-
tions using the LDA were performed for a set of representative
occupancy configurations. These R105 total energies were then
used to create a set of fitting coefficients based on the Ising model
which allowed the total energy to be predicted based on the
occupancy configuration. Further, they used the symmetry and
physical irrelevance of many of the configurations to reduce the
number of calculations needed in the optimization. Monte Carlo
annealing simulations were performed in order to determine the
stable configurations. The most stable structures were then further
optimized with respect to the other lattice parameters. Zero-point
energy was also included in their total energy results through ab-
initio calculation of the phonon density of states of R12 and
R105 Boron.

Oganov et al. summarize these recent findings by stating that
the controversy over the ground state of Boron has been resolved,
with R105 emerging as the true ground state [6]. Our results using
an accurate and computationally efficient tight-binding approach
reach the same conclusion.

2. Tight-binding method

We have used the NRL-TB method [7–9] in our exploration of
the structure of Boron. NRL-TB is advantageous because of its fast
performance when compared with first-principle methods such as
the LAPW method [10]. In general, the NRL-TB method diagona-
lizes a 9N�9N matrix for the s, p, and d orbitals, where N is the
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number of atoms in the unit cell. For Boron we have omitted the d
orbitals, so we diagonalize only a 4N�4N matrix. NRL-TB0s fast
performance (it is about 1000 times faster than LAPW) makes the
TB approach far more practical when dealing with structures with
many atoms in the unit cell, as in the present work.

The NRL-TB method is based on a non-orthogonal version of
the Slater–Koster two-center formalism [11] and uses a set of
parameters fitted to first‐principles total energy and energy band
results in order to predict the total energies of structures which
were not fitted. These parameters can be broken into the on-site
parameters, the Hamiltonian parameters, and the overlap para-
meters. The parameter set is created by performing a non-linear
least-square fit to the first‐principles data and determining a set of
coefficients of two polynomials, listed below.

The on-site parameters depend on the orbital angular momentum
and density of neighboring atoms, parametrized by the formula

hiα ¼ a~iαþb~iαρ
2=3
i þc~iαρ

4=3
i þd~iαρ

2
i ð1Þ

where ρi is the atom density seen from atom i, and is given by the
equation

ρi ¼ ∑
ja i

exp ½�λ2Rij�FcðRijÞ ð2Þ

where FcðRijÞ is a smooth cutoff function, and Rij is the distance
between atoms i and j.

The Slater–Koster matrix elements of the Hamiltonian and
overlap parameters are found from the equation

PγðRÞ ¼ ðeγþ f γRþ f γR
2Þ exp ð�g2γRÞFcðRÞ ð3Þ

where γ is the type of interaction (the interactions are sss, sps,
pps, and ppπ in the case of Boron), R is the distance between
atoms, and FcðRÞ is the same cutoff function as the one in Eq. (2).
The coefficients eγ ; f γ ; f γ ,and gγ are different for the Hamiltonian
and overlap matrices, but both have the functional form given
in (3).

A shift in the first-principle (in our case LAPW) eigenvalues is
performed that simplifies the total energy formula from Density
Functional Theory (DFT) by making the sum of the eigenvalues
equal to the total LAPW energy. The DFT total energy expression is

E½nðrÞ� ¼∑
i
ϵiþG½nðrÞ� ð4Þ

in which ∑iϵi is the sum of the eigenvalues over all k-points in the
Brillouin zone and G½nðrÞ� comprises the other terms for the DFT
total energy. New eigenvalues are created using the equation

ϵ0i ¼ ϵiþV0 ð5Þ
in which the shift V0 is given by the formula

V0 ¼ G½nðrÞ�=Ne ð6Þ
where Ne is the total number of valence electrons and nðrÞ is the
electronic density. After performing the shift, the total LAPW
energy is equal to the sum of the eigenvalues:

E½nðrÞ� ¼∑
i
ϵ0i ð7Þ

The parameters are determined by a non-linear least-square fit
using a Levenberg–Marquardt algorithm [12,13] which minimizes
the mean-square error:

M¼ ∑
j

i
wEðiÞ ELAPW ðiÞ�ETBðiÞ

�� ��2þ ∑
i;k;n

wBði; k;nÞjεLAPW ði; k;nÞ�εTBði; k;nÞ2

ð8Þ
where ELAPW ðiÞ and ETBðiÞ are the total energies of the LAPW and
Tight-Binding calculations for the ith structure, and εLAPW ði; k;nÞ
and εTBði; k;nÞ are the LAPW and TB eigenvalues, respectively, of
the nth band of the kth k-point of the ith structure. The weights

wEðiÞ and wBði; k;nÞ are chosen so that we can emphasize the
relevant parts of the calculation. Typically wB is of order unity for
bands near the Fermi energy, and wE is between 500 and 1000.
The sums are over all structures i, over all k-points k for each
structure, and over all valence/conduction bands n that are
occupied or within about 1 Ry of the Fermi energy. The RMS
error of the total energy fit of Eq. (8) used to construct the
parameter set given in Table A2.1 in Appendix 2 is 2 mRy.

3. Total energy results

LAPW calculations for the sc, bcc, fcc, dhcp, and α-rhombohedral
(R12) Boron structures were performed and used in a non-
orthogonal NRL-TB method fitting to generate a set of 41 Tight-
Binding coefficients. The coefficients were calculated only for the s
and p orbitals. The d-states were omitted since Boron has only three
s and p valence electrons.

The set of parameters listed in Table A2.1 was used to predict the
total energies of 15 additional structures which were not fitted, many
of which would be difficult to calculate with a first-principle method
considering their size and complexity. A k-point mesh was generated
for these Tight-Binding calculations, which was on an 8�8�8 grid.

The method of determining the total energy of a structure was
to perform full optimizations for the structures. For structures
with only one independently varying lattice parameter, this only
required performing a volume optimization by calculating the total
energy of the structure for a set of different volumes and obtaining
the minimum energy. For structures with more than one inde-
pendently varying lattice parameter, the entire process of volume
optimization was repeated for multiple values of each additional
independent parameter, and the minimum from all the configura-
tions was taken as the true minimum total energy for the

Table 1
The per-atom volumes and total energies found for the structures explored are
listed in columns 3 and 4, respectively. The table is ordered from lowest to highest
total energy. In the first column, additional unit cell information such as angle and
c/a is provided. The structures to which the parameters were fitted are marked as
fitted in the first column.

Structure Space group Volume
(Bohr3/atom)

Total energy
(mRy/atom)

R105hex vacancy (c/
a¼2.18)

P3m1-D3
3d

51.392 �104.72

R105 (angle¼64.741) R3m-D5
3d

51.078 �104.63

T190 (site configuration
588, c/a¼1.4)

P42=nnm-D12
4h

49.699 �100.93

γ-28 (b/a¼1.11, c/a¼1.39) Pnnm-D12
2h

46.955 �100.61

R12 (angle¼58.51) (fitted) P3m-D5
3d

48.507 �100.21

T50 (c/a¼0.57) P42=nnm-D12
4h

51.14 �87.07

aGa (c/a¼1.1,
angle¼120.321)

Cmca-D18
2h

44 �75.09

betaSn (c/a¼2.31) I41=amd-D19
4h

44.5 �59.73

c19 (angle¼55.61) R3m-D5
3d

43 �55.44

DHCP (c/a¼1.21) (fitted) P63=mmc-D4
6h

42.25 �46.84

A9 (c/a¼1.31) P63=mmc-D4
6h

47.25 �25.78

C32 (c/a¼1.02) P6=mmm-D1
6h

42.67 �17.87

shex (c/a¼1.03) P6=mmm-D1
6h

42 �15.19

sc (fitted) Pm3m-O1
h

44.739 �11.51

diam. Fd3m-O7
h

57.07 0.97

aHg (angle¼53.91) R3m-D5
3d

39 2.69

A6 (c/a¼1.29) I4=mmm-D17
4h

42 2.98

fcc (fitted) Fm3m-O5
h

39.366 4.06

hcp (c/a¼2.03) P63=mmc-D4
6h

39.5 8.02

bMn Pð41Þ32-O7 39.573 11.64

bcc (fitted) Im3m-O9
h

41.156 31.28
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