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a b s t r a c t

Ewald-parameter dependence of Coulomb interaction in ionic crystals was studied using a point-charge
model. In the presence of the long-range interaction, the ion configuration breaks spherical symmetry of
local potential and charge at each ion site, and gives non-scalar contributions to them. This non-scalar
potential has similar effects to Heisenberg interaction, while is intrinsically distinct from conventional
multipole expansions of the scalar potential. Symmetry and magnitude of the scalar and non-scalar
potentials are similar for most materials despite the different definitions, but one exception can be seen
in parent materials of hole-doped high-Tc cuprates.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In crystal-field theory, anisotropic Coulomb potential causes
deviation of wavefunctions from spherical symmetry around a site
of an ionic crystal [1]. It is well known that d electrons in the
octahedral field produced by six surrounding anions split into t2g
and eg orbitals with different energies. The anisotropic potential is
described as a multipole expansion, a scalar function of the
position. The potential is originally composed of contributions
from the nearest neighboring ions with high symmetry or cubic
groups. More general consideration of the anisotropic potential,
which includes contributions beyond the neighboring ions with
lower symmetry, is discussed using the Ewald method [2–4].
However, Ref. [2] indicates that this method has conditional
convergence for the multipole expansions. The treatment beyond
the Ewald method is required for the absolute convergence, and
this treatment for charge density is applied to the first principle
calculations [5,6]. Some reports mention that the conditional
convergence is caused by the shape of the crystal [7].

Classical Heisenberg interaction discusses another deviation
from spherical symmetry. This interaction is controlled by spin
orientations at the nearest neighboring sites, similar to the crystal
field theory, but describes local rotational symmetry exactly at the
site, in contrast to the anisotropy above. Given the fact that
rotational symmetry at a certain point in general includes con-
tributions from all ions in the crystal, there is some possibility of
unknown interaction at the site, which is not described by the
Heisenberg interaction only.

In this report, Coulomb interaction in crystals with infinite
periodicity were reinvestigated in the point-charge model, based
on the Ewald method. It turns out that, in the presence of the long-
range interaction, the Coulomb potential has another, non-scalar,

contribution, which breaks the spherical symmetry at the site, in
addition to the scalar contribution. This dual aspects of the
potential may cause the conditional convergence of the Ewald
method. The non-scalar contribution, which has the same devia-
tion of the spherical symmetry as the Heisenberg interaction, is
caused by the ion configuration of the infinite lattice, and coexists
with distortion of the charge from the original spherical symme-
try. This non-scalar contributions neither violate Poisson's equa-
tion nor affect scalar potential and charge. Furthermore, it can be
defined both at magnetic and non-magnetic ions, in contrast to the
Heisenberg interaction, and be considered as anisotropy of local
relative permittivity in the framework of the scalar-potential field.

As specific examples, anisotropic potentials and charges of a
d-ion in a NaCl-type structure and ions in ZnO, ZnS (zinc blende),
CaF2, TiO2 (rutile), SrTiO3, La2CuO4, Nd2CuO4, and HgBa2CuO4 were
calculated. Though these two (scalar and non-scalar) potentials are
defined differently, they have the same symmetries and similar
magnitudes at the ion sites in SrTiO3 and the d-ion site in the NaCl-
type structure. The similar features are also observed in more
complicated materials, such as ZnO, ZnS, CaF2, TiO2, and Nd2CuO4.
However, these potentials have completely different symmetries at
the O sites in the CuO2 planes of La2CuO4 and HgBa2CuO4, parent
materials of hole-doped high-Tc cuprates. This difference may have
some connection with the hole-doped superconductivity.

2. Method

In the Ewald method, the Coulomb potential induced by the
surrounding point charges at an i-th ion site (ri) is expressed as
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follows, using a parameter ξ:

VðriÞ ¼ ∑
ja i

f ðξÞþ∑
j
∑

ka0
gðξÞ� Zie

2π3=2ε0
ξ; ð1Þ

when the crystal has charge neutrality. Here, ε0 is the vacuum
permittivity, f ðξÞ is the contribution from real space

f ðξÞ ¼ Zje
4πε0jrj�rij

erfcð rj�ri ξÞ;
���� ð2Þ

and gðξÞ is the contribution from reciprocal space

gðξÞ ¼ Zje

4π2k2ε0v
e�π2k2=ξ2e2πik�ðrj � riÞ; ð3Þ

where v is the volume of the unit cell.
When ξ is small enough ðξ-0Þ, gðξÞ approaches zero, and

Eq. (1) becomes

VðriÞþ
Zie

2π3=2ε0
ξ� ∑

ja i
f : ð4Þ

This equation indicates that the potential and charge at the i-th
site are determined by the surrounding ions ðja iÞ for small ξ.
Furthermore, because the right side of Eq. (4) is not a summation
of distribution with spherical symmetry, the left side is also
expected to lose the symmetry and deviate from scalars.

When the spherical symmetry of the local potential and charge
are broken at ri, Eq. (1) can be expanded using associated Legendre
polynomials (Plm) in spherical polar coordinates ðθ;φÞ:

V ðnÞ
i ðθ;φÞþZðnÞ

i ðθ;φÞe
2π3=2ε0

ξ¼ ∑
n

l ¼ 0
knlL

ðlÞ
i ðξ; θ;φÞ; ð5Þ

for the n-th order expansion. Here,

LðlÞi ¼ al0i P
0
l ð cos θÞ

þ ∑
l

m ¼ 1
½almi Pm

l ð cos θÞ cos mφþblmi Pm
l ð cos θÞ sin mφ�;

almi ðξÞ ¼ Clm ∑
ja i

fPm
l ð cos θÞ cos mφ

þClm∑
j
∑

ka0
gPm

l ð cos θÞ cos mφ;

and

blmi ðξÞ ¼ Clm ∑
ja i

fPm
l ð cos θÞ sin mφ

þClm∑
j
∑

ka0
gPm

l ð cos θÞ sin mφ: ð6Þ

The coefficient Clm may be given as

Clm ¼ ð�1Þm2ðl�mÞ!
ðlþmÞ! Cl0 ðmZ1Þ;

Cl0 ¼
l!

ð2l�1Þ!!: ð7Þ

The n-th order Legendre expansion of the anisotropic potential is
alternatively expressed as the n-fold tensor product of the unit
vector, ( sin θ cos φ, sin θ sinφ, cos θ) [8], and hence the coeffi-
cient knl should satisfy the following equation:

cos n θþ cos n�1 θ¼ ∑
n

l ¼ 0
knlCl0P

0
l ð cos θÞ; ð8Þ

for even nðZ2Þ (k00 ¼ 1 for n¼0). It should be noted that the
charges in Eqs. (2) and (3) (Zj) should also deviate from scalars,
because Eq. (5) indicates deviation from the spherical (isotropic)
charge at ri. However, this further deviation is not considered here
for simplicity.

For instance, the Legendre expansions at Ti and O sites in a
cubic perovskite, SrTiO3 (a¼3.905 Å) are considered (Fig. 1). In the
crystal, scalar point charges (Sr2þ , Ti4þ , and O2�) are assumed,

which behave as ions. Fig. 1(a) and (c), respectively, shows a00Ti ðξÞ
and a00O ðξÞ, or ξ dependence of the scalar (isotropic) terms (l¼0) at
the Ti and O sites. Eq. (5) indicates that the isotropic potentials are

given by the ai
00-intercepts (V ð0Þ

O and V ð0Þ
Ti ), and that the isotropic

charges are given by the slopes (Zð0Þ
O and Zð0Þ

Ti ). The former exactly

corresponds to the conventional scalar potentials (V ð0Þ
O ¼ 23:8 eV

and V ð0Þ
Ti ¼ �45:6 eV) and the latter gives the self charges at ri

(Zð0Þ
O ¼ �2 and Zð0Þ

Ti ¼ þ4). These values are unchanged in an
arbitrary region of ξ.

At the Ti site, though the anisotropic contributions of l¼1, 2, and
3 are zero, non-zero contribution appears at the 4th order ðLð4ÞTi a0Þ.
When the Ti–O bonds are directed to the Cartesian coordinates, a40Ti
and a44Ti become non-zero, as seen in Fig. 1(b). In contrast to the
isotropic contribution (l¼0, Fig. 1(a)), these coefficients have ξ
dependence. For small ξ, we can estimate the non-scalar potential
and charge using the intercepts and slopes of the dotted lines in Fig. 1
(b). One of the inset figures (blue) in Fig. 1(b) suggests positive charge
anisotropy determined by the slopes of a40Ti and a44Ti , and the other
(red) suggests negative potential anisotropy obtained by the inter-
cepts. Both the anisotropic potential and charge have Oh symmetry,
but the signs are opposite. These features are similar to the isotropic
contributions, where the isotropic (scalar) charge and potential (Zð0Þ

Ti
and V ð0Þ

Ti ) have the same (spherical) symmetry with the opposite
signs, as seen in Fig. 1(a). This similarity validates the existence of the
non-scalar (anisotropic) charge and potential at small ξ.

At the O site, non-zero contribution appears at the 2nd order
ðLð2ÞO a0Þ; when the z-axis is taken along the Ti–O bond direction,
a20O becomes non-zero as shown in Fig. 1(d). Similar to the Ti site,
the anisotropic potential and charge at O can be defined (only) for
small ξ; the slope and intercept of a20O give negative charge
anisotropy (red) and positive potential anisotropy (blue), as shown
in the insets of Fig. 1(d). Again, the potential and charge have the
same symmetry with the opposite signs.

These non-scalar contributions of the potential and charge
have several features. First, these do not violate the Poisson's
equation around the i-th ion; only the scalar term of the charge
(Zð0Þ

i ) at ri contributes to the equation, because Eq. (5) satisfies the
following equation:

ðnþ1Þ∬ lim
ξ-0

ZðnÞ
i sin θ dθ dφ¼ 4πZð0Þ

i ; ð9Þ

for even n. Secondly, the non-scalar potential and charge reflect
rotational symmetry at the i-th site, because the Legendre expan-
sion in Eq. (5) is chiefly affected by the surrounding ions ðf ðξÞÞ for
small ξ. Finally, the non-scalar potential and charge for small ξ
suggest some relation to the long-range Coulomb interaction,
because ξ has the dimension of 1/r. These features suggest
spherical symmetry breaking of the potential and charge at ri,
owing to the long-range Coulomb interaction.

In the conventional crystal-field theory, on the other hand,
anisotropic Coulomb potential caused by the neighboring ions
around ri is expressed as a scalar function of the position. When
contribution of the infinite periodicity (beyond the neighboring ions)
is included in the theory, the scalar potential at rsþri is given by

ViðrsÞ ¼ ∑
ja i

f ðξ; rsÞþ∑
j
∑

ka0
gðξ; rsÞ�

Zie
4πε0

erfðξrsÞ
rs

: ð10Þ

Here,

f ðξ; rsÞ ¼
Zje

4πε0jrj�ri�rsj
erfcð rj�ri�rs ξÞ;

����
and

gðξ; rsÞ ¼
Zje

4π2k2ε0v
e�π2k2=ξ2e2πik�ðrj � ri � rsÞ: ð11Þ
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