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a b s t r a c t

A novel method is proposed to calculate the Debye frequency, speed of sound, and some other properties
of ionic crystals and metal alloys from the plasma frequency of the ions. As an example of application,
the theoretically obtained Debye temperatures TD of NaCl, KCl, RbI, AgBr, Cu3Au are 308 K, 238 K, 98 K,
149 K, and 296 K respectively, while an experiment gives 321 K, 235 K, 103 K, 140 K, and 285 K
respectively. The reliability of calculated values of TD of the univalent and bivalent pure metals is
characterized by R2C0:985. The hypothetical properties of solid under extremal conditions were
estimated. For example, the metallic hydrogen has the theoretical determined TDC4000 K and the
speed of sound 20 km c�1 at a pressure of 2.60 Mbar.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Historically, the first quantum model of solids has been
suggested by Einstein. It was declared that all the points of lattice
(the atoms) of solid are the isolated oscillators with the same
frequency, ωE . However, as it is well known, the low temperature
dependence of Einstein specific heat is wrong. Debye has shown
that this wrong theoretical result is due to the atoms considered as
isolated oscillators, but the real atoms of solid are the bonded
oscillators, so that their oscillations are correlating with volume of
whole piece of solid. To correct the Einstein model, Debye takes
into account the normal collective atom oscillation modes instead
of the individual oscillations of isolated atoms. Thus, in the Debye
model, all the points of lattice are oscillating with consistency in
phase, amplitude and frequency.

According to the Debye model of crystalline solid, there is a
maximum frequency of the elastic vibrations, ωD (Debye cutoff
frequency) [1–3]. In this approximation, the dispersion relation
has a linear form ω¼ csk, where cs is the constant velocity of
sound, k is the wavevector. The various physical properties of
solids such heat capacity, speed of sound, thermal expansion,
melting temperature, compressibility can be expressed in terms of
the Debye frequency or Debye temperature TD [4].

The approximation of experimental specific heat dependence
on the temperature with the Einstein model gives the numeric
value of ωE which is close to ωD. Analogously, the mean square of
thermal atomic displacements in lattice obtained by both men-
tioned models has the similar values (Appendix A).

In framework of the Debye model, the methods of determining
the Debye temperature can be divided into two categories:
calorimetric, based on measurement of temperature dependence
of the heat capacity at low temperature; and calculation of TD from
the elastic constants, based on the three phase velocities for
propagation of elastic waves in the crystal, averaged over all
directions. In addition, there are the semi-empirical approaches,
which employ the different lattice properties such as raw data
(dielectric permittivity, interionic distance, etc.).

These methods use the small wavevector part of dispersion
relation. Thereafter, ωD is estimated by extrapolating to high
wavevectors. However, due to a linear approximation of dispersion
law, it is possible to determine ωD based on the data on the high
wavevectors those correspond to the cutoff frequency immedi-
ately. Really, the wavelength of ωD -mode approaches the distance
between the adjacent atoms. Therefore, Debye frequency can be
also considered as an eigenfrequency of the atom vibration in local
potential well that is determined by all surrounded atoms of the
crystal.

The Debye frequency can be estimated by ab initio methods, for
example, from the quantum chemistry computation of the energy
of point of lattice in the crystal. However, such calculations require
too much computing resources. For certain types of solids, the
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satisfactory theoretical estimation of ωD can be obtained without
resorting to quantum chemistry computations. It has been shown
in [5] that the speed of sound into metal crystals can be
theoretically obtained from the ionic plasma frequency [6,7].

A simplest approach to estimate the Debye frequency of metals
and ionic crystals is proposed. A good estimation of the Debye
temperature and the speed of sound for a wide range of pure
metals and ionic crystals can be obtained from the approximation
of the Debye cutoff frequency of an acoustic phonons spectrum of
metal by the ionic plasma frequency. In this paper, for the first
time such a method has been developed to estimate the Debye
temperature and other properties of the ionic crystals such as the
alkali-halides and the crystal metal alloys.

2. Model

The ionic binding in the ionic crystals is due to the Coulomb
interaction. A high frequency oscillation of the charged ions in the
ionic crystal lattice can be described by development of Langmuir–
Tonks model of plasma vibration [6]. It is necessary to take into
account the ions of different masses and charges in the ionic
crystals.

To calculate the ions frequency, we suppose that the electric
charge density of ensemble of j-th type ions is given by
ρj ¼ ρ0jþδρj, where ρ0j ¼ const is a mean equilibrium charge
density, δρj is a small density perturbation, jρ0jjb jδρjj. Analo-
gously, the velocity of j-type ions motion is vj ¼ v0jþδvj, where v0j
is a mean velocity of heat motion in thermodynamic equilibrium
(so that v0j ¼ 0 ), δvj is a perturbation of equilibrium velocity
of ions.

The equation of continuity is given by

_ρj ¼ �ð∇ρjvjÞC�ρ0jð∇δvjÞ; ð1Þ

since δvj∇δρj can be neglected as an equation term of second
infinitesimal order. Differentiating with respect to time, we obtain
the expression

δ €ρj ¼ �ρ0jð∇δ _v jÞ: ð2Þ

The equation of ions fluid motion is given by

ρ0jδ _v j ¼
qj
mj

ρ0jE; ð3Þ

where qj and mj are a charge and a mass of an ion of j-th type
respectively, E is an electric field strength vector. After differen-
tiating both parts of Eq. (3) by space gradient operator ∇, we
obtain the expression

ρ0jðδ∇ _v jÞ ¼
qj
mj

ρ0jð∇EÞ: ð4Þ

Maxwell–Poisson equation is ð∇EÞ ¼ ε�1
0 ∑kρk, where the sum-

mation is over all types of ions. Taking into account the electro-
neutrality of complete ensemble of all types of ions ∑kρ0k ¼ 0, we
obtain

ð∇EÞ ¼ 1
ε0
∑
k
δρk: ð5Þ

Substituting (4) into (2) with account of (5), we get the equation

δ €ρj ¼ �ω2
0j∑

k
δρk; ð6Þ

where the so-called plasma frequency (or Langmuir frequency) of
j-th type of ions is given by

ω0j ¼
ffiffiffiffiffiffiffiffiffiffiffi
q2j n0j

ε0mj

s
; ð7Þ

where n0j ¼ ρ0j=qj is a mean concentration of j-th type of the ions.
Analogously, the vibration eigenfrequency of valence electrons

in metal is defined by an expression ωe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ne=ðε0me

p
Þ, where e,

ne, me are the elementary charge, concentration of the free
(valence) electrons, and electron effective mass respectively. This
value, called a plasmon frequency, is an important parameter in
optics of the metals [8].

Denoting in Eq. (6) the total electric charge density perturba-
tion as

δρ¼∑
k
δρk; ð8Þ

then after the summation in (6) over all j-th types of ions, we
obtain

δ €ρ ¼ �ω2
0δρ; ð9Þ

where the combined plasma frequency is given by expression

ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
∑
j
ω2

0j

r
: ð10Þ

Consider a simple ionic crystal as NaCl containing two types of
ions with masses m1 andm2 (reduced mass ism¼m1m2=ðm1þm2Þ
), and the effective electric charges q1 ¼ q and q2 ¼ �q. In this case,
Eq. (10) with account of Eq. (7) can be rewritten as

ω0 ¼ q
ffiffiffiffiffiffiffiffiffi
n0

ε0m

r
¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρm

ε0m1m2

r
; ð11Þ

where n0 ¼ ρ01=q1 ¼ ρ02=q2 is a mean concentration of each types
of ions; ρm ¼ ðm1þm2Þn0 is a mass density of the crystal.

In case of the ionic crystal as CaCl2, the effective ionic charges
are q1 ¼ 2q and q2 ¼ �q. Taking into account the electroneutrality
of solid, the ionic concentrations values are n1 ¼ n0 and n2 ¼ 2n0;
ρm ¼ ðm1þ2m2Þn0. Eq. (10) with account of Eq. (7) gives the
expression

ω0 ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0

ε0
2
m1

þ 1
m2

� �s
¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρm

ε0m1m2

s
: ð12Þ

Analogously, consider a binary metal alloy containing two types
of ions with masses m1 and m2, and the positive ionic electric
charges q1 and q2. In this case, we obtain

ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21n01

ε0m1
þq22n02

ε0m2

s
; ð13Þ

where ρm ¼m1n01þm2n02 is a mass density of an alloy.
Particularly, in case of simple metal, we obtain

ω0 ¼ q
ffiffiffiffiffiffiffiffiffi
n0

ε0m

r
¼ q
m

ffiffiffiffiffiffiffi
ρm

ε0

r
; ð14Þ

where m and q are the ionic mass and the effective electric charge
respectively, ρmCmn0 is a mass density of a metal crystal.

Since the solid crystal is an appreciably more compact system
of ions than Langmuir plasma, consequently the van der Waals
interactions of ions (as London's dispersion forces [3,9]) and also
the friction forces should be taken into account.

Therefore, instead of Eq. (9), we obtain

δ €ρ ¼ �Ω2δρ�2γδ _ρ; ð15Þ
Ω2 ¼ω2

0þω2
W , whereωW

2 is an additional elasticity of the potential
well of the ion, elasticity which corresponds to the van der Waals
forces contribution for the small ion oscillation amplitudes; 2γ is a
friction coefficient.

If γoΩ, then frequency of the ions free oscillations in accor-
dance with Eq. (15) is given by the expression

ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2�γ2

q
; ð16Þ
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