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a b s t r a c t

In previous work, we proposed a computational methodology that addresses the elimination of the self-
interaction error from the Kohn–Sham formulation of the density functional theory. We demonstrated
how the exchange potential can be obtained, and presented results of calculations for atomic systems up
to Kr carried out within a Cartesian coordinate system. In this paper, we provide complete details of this
self-interaction free method formulated in spherical coordinates based on the explicit equidensity basis
ansatz. We prove analytically that derivatives obtained using this method satisfy the Virial theorem for
spherical orbitals, where the problem can be reduced to one dimension. We present the results of
calculations of ground-state energies of atomic systems throughout the periodic table carried out within
the exchange-only mode.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The self-interaction (SI) error has been present in quantum
mechanical calculations of electronic states of matter since the
inception of quantum mechanics. It arises through the use of the
Hartree term to approximate the electrostatic energy of a cloud of
electronic charges by a density. The product of densities, as used in
the Hartree term, allows the interaction of two electrons in the
same single particle state (or of an electron simultaneously in two
different states), that is in clear violation of the Pauli exclusion
principal. The SI error was first pointed out by Fock [1] in the
1030s, when even Fermi weighed in with a suggestion for a
solution [2]. The problem remained more-or-less dormant until
the introduction of the density functional theory (DFT) [3] in 1964
and its Kohn–Sham formulation [4] the following year, fromwhich
point the realization of its damaging effects has mushroomed, and
so have the efforts at its alleviation [5].

At the same time, the computational simplicity of the Kohn–
Sham method and the overall good agreement with experiment
has resulted in an explosion of implementations. It was conjec-
tured that the agreement resulted because of the cancellation of
errors between the Hartree term and the so-called exchange
correlation term (see below). Unfortunately, however, it was soon
realized that the method failed in describing systems in which the

effects of correlation (Coulomb interaction) are judged to be
strong, such as semiconductors and wide-gap insulators. The
method was also found to fail in describing physical effects such
as binding energies, activation barriers and rates in catalytic
materials, and many others. For a recent review of these problems
and the generally unsatisfactory nature of various formal schemes
introduced for their alleviation, of which the list included
in [5] provides but a small sample, the reader is directed to the
literature [6].

A method proposed recently [7,8] addresses the SI problem for
the non-interacting system in the Kohn–Sham density functional
theory in computationally unexpected simple fashion, using the
explicit equidensity basis (EEB) ansatz. We define its solution as
the term is used in our work: to solve the self-interaction problem
one must show that the Coulomb energy is calculated in terms of
the pair density, and that the Coulomb potential is obtained by
functional differentiation of the Coulomb energy with respect to
the density. The formalism is founded on the expansion of the
Slater determinant obtained in the Kohn–Sham formalism in
terms of an orthonormal and complete basis, the equidensity
basis, that exhibits explicitly the density, n r( ). The advantages
provided by this feature are set forth in the papers just referred to.
In these papers, the equidensity basis was expressed in a Cartesian
coordinate system and a corresponding grid used to store the
orbitals and their spatial derivatives along with those of the
density. In order to complete the algebraic aspects of the formal-
ism we repeat key parts of the derivation in terms of a spherical
coordinate system. This formulation can be used advantageously
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in electronic structure codes based on atom-centered coordinate
systems, e.g., in linear muffin–tin orbital (LMTO) or Korringa–
Kohn–Rostoker (KKR) methods. For systems where all orbitals are
spherical (s-orbitals), we prove analytically that the obtained
potential using the explicit equidensity ansatz satisfies the Virial
theorem.

2. Theory

2.1. Conventional Kohn–Sham theory

The solution, Ψ r( )N( ) , of the many-body Schrödinger equation
for a quantum system of N interacting electrons under an external
potential, v r( ), depends on all coordinates and is therefore hard to
solve. The Kohn–Sham system [4] got introduced in conjunction
with density functional theory[3] as a fictitious system of non-
interacting particles which yields the same density as the original
problem for the ground state. In the traditional Kohn–Sham theory
the energy as a functional of the density, n r( ), is given by the
expression

∫= + + +E n v n T n U n E nr r r[ ] ( ) ( ) d [ ] [ ] [ ]. (1)s H xc

E n[ ]xc denotes the exchange–correlation functional. The kinetic
energy of a system of non-interacting particles is given by (the
subscript s marks the non-interacting system)

Φ Φ= 〈 | ^ | 〉T n T[ ] , (2)s
N

where Φ Φ=r r r( ,..., ) ( )n N1 ( ) is a single Slater determinant con-
structed out of the N lowest in energy solutions, f r( )j , of the
Kohn–Sham equations
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is the Hartree energy, a classical expression for the Coulomb
energy. The density given by the expression
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The ground state of the system is determined through minimizing
of the total energy functional (1). As shown by Hohenberg and
Kohn [3], the basic variable of the density functional theory is the
density, and the condition for the ground state is that the energy
be stationary with respect to changes in the density, δ δ =E n n[ ]/ 0.
From that condition and δ δ = −T n v/s KS, the Kohn–Sham potential
appearing in Eq. (3) must satisfy
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As already pointed out in the original paper of Hohenberg and
Kohn [3], the classical expression, U n[ ]H , for the Coulomb energy
was used out of convenience, allowing a simple and efficient way
of performing the functional derivative of the Coulomb energy
with respect to the density. The simplicity, however, comes with a
steep price: as shown above, the use of this term introduces self-
interaction effects, the unphysical interaction of an electron with
itself.

When the density in (5) is used in the Hartree term, it produces
in the numerator inside the integral terms of the kind, f fr r( ) ( )j j1 2 ,

describing the interaction of two particles in the same state. The
use of the Hartree term with respect to a single-electron system
clearly shows the SI problem, namely a particle in a given state
interacting with itself in that state, that is in practice not
compensated by the exchange correlation functional, which was
defined to cancel the SI error exactly. However, this functional is
unknown and in practice replaced by some approximate expres-
sion. Numerous implementations with respect to various approx-
imate schemes for E n[ ]xc have helped to reveal the true state of
affairs: approximate expressions can be designed to yield accep-
table approximations to known results in a case-by-case basis,
even in broad classes of systems and properties, but none can be
shown a priori to satisfy the fundamental requirement of the
second Hohenberg–Kohn theorem, namely that any approximate
handling of the energy functional should yield an upper bound to
the exact value of the ground state energy within the full solution
of the corresponding Schrd̈ingier equation. For example, the use of
a given exchange–correlation functional within Kohn–Sham DFT
could lead to a lower energy compared to the ground state energy
of the many body solution of the equivalent Hamiltonian of the
theory, where the Kohn–Sham formalism is not used.

2.2. Reformulation of the Kohn–Sham equations

The quantum mechanically correct expression of the Coulomb
energy is expressed in terms of the pair density, n r r( , )1 2 , rather
than the product of densities
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where the pair density can be obtained by integrating the anti-
symmetric, N-particle wave function, Ψ r( )N( ) , over all coordinates
but two
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Clearly, the corresponding Coulomb energy is self-interaction free.
For the Kohn–Sham system, described by a single Slater determi-
nant, the non-interacting pair density (denoted by the subscript s)
is given by the expression
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where the σf r( )i
i are the occupied states or orbitals that are the N

lowest in energy solutions of the Kohn–Sham equations, and si is
the spin index of that particular orbital. The non-interacting pair
density can be split into two parts, the contribution to the classical
Hartree term and the exchange part, Js
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The expression for the non-interacting Coulomb energy reads as
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The non-interacting Coulomb energy within the Kohn–Sham
system, by construction self-interaction free, can be obtained by
replacing the classical Hartree energy (Eq. (4)) by the quantum
mechanical expression (Eq. (12)). The energy functional (Eq. (1))
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