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a b s t r a c t

Rapidly rotating two-dimensional ultracold Bose–Einstein condensates of spinless bosons in a harmonic trap
have attracted considerable interest during the recent years. It is expected that, in the fast-rotation limit, the
system of bosons will exhibit collective behavior similar to that of two-dimensional electrons in the fractional
quantum Hall effect regime. It is predicted that the most robust correlated bosonic state in this regime will be
the Bose Laughlin state at a half filling factor. An exact treatment of such a state is generally a formidable task
due to the inherent many-particle nature of the wave function. We report in this work that a transformation to
Jacobi coordinates allows one to obtain much desirable exact analytic closed-form expressions for various
quantities of interest corresponding to a Bose Laughlin wave function for various finite systems of particles.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The integer quantum Hall effect (IQHE) [1–5] and the fractional
quantum Hall effect (FQHE) [6–14] are two remarkable phenomena
which occur in a two-dimensional electron gas (2DEG) subject to a
perpendicular magnetic field. At first look, a rapidly rotating, dilute
Bose–Einstein condensate (BEC) system made up of neutral atoms at
very low temperature [15–24] seems to be unrelated to the physics of
quantum Hall effect (QHE). Despite such an appearance, it is now fairly
well understood that there exists a very close relationship between
these two phenomena. This relationship originates from the fact that
the role played by a perpendicular magnetic field in a 2DEG closely
mirrors the effect created by fast rotation in BEC systems of harmo-
nically confined two-dimensional (2D) bosons [25].

It has been predicted that for fast rotation, when the rotation
frequency is close to the harmonic trap frequency, the BEC system
will enter the QHE regime [26–35]. It is expected that, in this
regime, the bosons will stabilize in strongly correlated liquid states
that resemble the FQHE liquid states of a 2DEG of Coulomb-
interacting electrons in a perpendicular magnetic field. If this is
the case, one can expect the atomic system to exhibit most of the
characteristic features of FQHE liquid states such as fractional
elementary excitations and anyon statistics.

From this perspective, cold atomic systems offer a fascinating
possibility in exploring the properties of strongly correlated systems
in the regimewhere inter-particle interactions play a leading role. Cold
atomic systems with enhanced inter-particle correlations have been
the subject of many theoretical and experimental studies since these

efforts may lead to the observation of novel physical phenomena.
What is even more tempting is the fact that, since cold atomic gases
can be well controlled and manipulated, they may provide us with
new scenarios not yet available in the realm of other condensed
matter systems. The challenging experimental task here is how to
reliably stabilize a cold atomic system into the FQHE regime of strong
correlations. In addition to being interesting in its own right, the
prospect of producing the bosonic version of FQHE states in cold
atomic systems may have other important ramifications, for instance,
in quantum computing [36]. In recent years, the QHE-rotating BEC
analogy has been theoretically explored in great detail, starting with
the prediction of a Bose Laughlin state occurring in systems of fast-
rotating spinless bosons in a harmonic trap [37,38].

In this work, we report exact analytical results for finite
systems of particles described by the Bose Laughlin wave function
at filling factor ν¼ 1=2. We were able to calculate exactly the
energy and one-particle density function corresponding to various
systems with up to N¼4 particles by transforming the desired
quantities in terms of the so-called Jacobi coordinates. The method
introduced is general and, thus, can be extended to larger systems
of particles. The exact results so obtained can also serve as an
important benchmark for numerical and exact diagonalization
studies that routinely are limited to finite systems of few bosonic
particles for instance N¼4 or N¼5 particles [39–41].

2. Analogy between a charged particle in a magnetic field and
a rotating boson in a harmonic trap

Let us consider a particle with charge, q (for simplicity we may
consider it to be positive), and mass, m, confined in a 2D space
and subject to a perpendicular magnetic field in the z-direction,
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B
!¼ ð0;0;BÞ. The quantum Hamiltonian for such a particle is
written as

Ĥ ¼ 1
2m

½ ^p!�q A
!ð r!Þ�2; ð1Þ

where ^p!¼ ðp̂x; p̂yÞ is the 2D linear momentum operator, A
!ð r!Þ is

the vector potential and r!¼ ðx; yÞ is the 2D position vector. Note

that B
!¼ ∇

!� A
!ð r!Þ. If one adopts the symmetric gauge

A
!ð r!Þ¼ B

2
ð�y; x;0Þ; ð2Þ

one can write the quantum Hamiltonian above as

Ĥ ¼ p̂2

2m
þm

2
ω2r2�ωL̂z; ð3Þ

where ω¼ωc=2, ωc ¼ ðqBÞ=m is the cyclotron frequency,

p̂2 ¼ p̂2
x þ p̂2

y , r
2 ¼ x2þy2, and L̂z ¼ xp̂y�yp̂x is the angular momen-

tum operator in the z-direction.
Let us now consider a spinless boson particle with mass m in a

2D harmonic trap of strengthω, rotating with an angular frequency,
Ω. In a rotating reference frame, the quantum Hamiltonian of the
harmonically confined boson can be written as

Ĥb ¼
p̂2

2m
þm

2
ω2r2�ΩL̂z: ð4Þ

One can immediately see that the bosonic Hamiltonian Ĥb of a
rotating system of harmonically confined bosons is basically
equivalent to the Hamiltonian, Ĥ , of charged particles in a
magnetic field when Ω¼ω. This observation suggests a close
analogy between the BEC and the QHE phenomenon. By mapping

2mω-qB; ð5Þ
one can write Ĥb for Ω¼ω exactly as in Eq. (1) where q A

!ð r!Þ is
formally replaced with an effective vector potential, A

!
eff ð r!Þ, as

given below:

q A
!ð r!Þ- A

!
eff ð r!Þ¼mωð�y; x;0Þ; ð6Þ

where now q B
!

- B
!

eff ¼ ∇
!� A

!
eff ð r!Þ.

Hence, by formally mapping the bosonic problem to that of a
QHE system, one can make use of well-known results pertaining to
such systems. For example, one knows that the quantum mech-
anical solution of the one-particle QHE problem results in an
energy spectrum of the form, En ¼ ðnþ1=2Þℏωc ðωc ¼ 2ωÞ, where
n¼ 0;1;… is the quantum index of Landau levels (LLs). Each LL is
highly degenerate with Ns single-particle states having the same
energy. When one is interested in the lowest energy states, one
focuses the attention on the lowest Landau level (LLL) that
corresponds to n¼0. As in the FQHE case, the basic non-trivial
correlated state for a system of bosons would be the Bose
Laughling state [42] at filling factor ν¼ 1=2 written as

Ψ ðz1;…; zNÞ ¼ ∏
N

io j
ðzi�zjÞ2 e�∑N

j ¼ 1jzjj2=4l
2
0 ; ð7Þ

where zj ¼ xjþ iyj ¼ rjeiφj are the 2D position vectors in complex

notation ði¼
ffiffiffiffiffiffiffiffi
�1

p
Þ and l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðqBÞ

p
is the characteristic length.

3. Bose Laughlin wave function and Jacobi coordinates

By adopting a QHE terminology, let us consider a 2D system of
NðZ2Þ particles with charge q and mass m subject to a strong
perpendicular uniform magnetic field, B in the z-direction. The
particles are spinless (or, as in the case of electrons in the FQHE
regime, their spin is considered fully polarized in the direction of

the magnetic field). The density of the system can be written as

ρ0 ¼
ν

2πl20
; ð8Þ

where the filling factor, ν, is defined as the ratio of N relative to Ns

(the degeneracy of each LL). In a disk geometry, we may visualize
the particles as filling uniformly a disk region with area,

πR2
N ¼N=ρ0, where RN is the radius of such a disk. The quantum

Hamiltonian for an interacting system of particles, Ĥ ¼ K̂þ V̂ ,
consists of kinetic and potential energy operators where

K̂ ¼∑N
i ¼ 1½

^p!i�q A
!ð r!iÞ�2=ð2mÞ is the kinetic energy operator. If

we focus our attention only on the particle–particle interaction
energy, one can write

V̂ pp ¼ ∑
N

io j
vð r!i� r!jÞ: ð9Þ

To have the present results apply to real FQHE states, we consider
the interaction potential between particles to be of Coulomb form,

vð r!i� r!jÞ ¼ q2=j r!i� r!jj. Note that, for the sake of simplicity, the
Coulomb's constant is omitted in the expression of the Coulomb
interaction potential. Other interaction potentials can be equally
handled with ease as long as they are translationally invariant.

Because the Bose Laughlin wave function includes only states in
the LLL, the expectation value of the kinetic energy operator is a
mere constant, 〈K̂ 〉=N¼ 1

2 ℏωc where ℏ is reduced Planck's constant
and ωc is the cyclotron frequency. The most important ingredient
entering various expressions for the particle–particle interaction
energy or similar quantities is the magnitude square of the wave
function. For the Bose Laughlin wave function, we can write it as

jΨ ðz1;…; zNÞj2 ¼ ½FNð r!1;…; r!NÞ�2exp �SNð r!1;…; r!NÞ
2l20

" #
; ð10Þ

where

FNð r!1;…; r!NÞ ¼ ∏
N

io j
ð r!i� r!jÞ2; ð11Þ

and

SNð r!1;…; r!NÞ ¼ ∑
N

j ¼ 1
j r!jj2: ð12Þ

At this juncture, we make the observation that various expressions
that involve FNð r!1;…; r!NÞ and SNð r!1;…; r!NÞ are more conve-
niently written in terms of Jacobi coordinates. For the sake of
brevity, the reader is referred to Appendix A for a description of
Jacobi coordinates and additional details. An excellent and concise
introduction to Jacobi's coordinates is also provided in [43] (see
pp. 423 and 608).

For a given many-particle wave function, the interaction energy
per particle is written as

ϵpp ¼
〈V̂ pp〉

N
¼ ðN�1Þ

2
〈vð r!1� r!2Þ〉; ð13Þ

where in a short-hand notation 〈⋯〉 represents the standard
quantum expectation value of the given operator with respect to

the wave function. When calculating 〈V̂ pp〉 from Eq. (13) one

clearly sees that the interaction potential, vð r!1� r!2Þ, depends
only on the magnitude of the first Jacobi coordinate, ξ1 ¼ j ξ

!
1j.

This implies that rewriting FNð r!1;…; r!NÞ and SNð r!1;…; r!NÞ in
terms of the Jacobi coordinates will significantly simplify many
calculations that otherwise are very challenging because of the
inherent many-particle nature of the wave function.

This approach enabled us to obtain simple expressions for the
functions FNð r!1;…; r!NÞ and SNð r!1;…; r!NÞ in terms of Jacobi
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