

Contents lists available at [SciVerse ScienceDirect](www.elsevier.com/locate/jpcs)

Journal of Physics and Chemistry of Solids

journal homepage: <www.elsevier.com/locate/jpcs>

Preparation of Pt–TiO₂ composite particles by alcohol reduction method and their photocatalytic activities

Sungsoo Kim, Kyungho Song, Minkyung Kim, Inseok Jang, Seong-Geun Oh^{*}

Department of Chemical Engineering, Hanyang University, Seoul 133-791, Republic of Korea

article info

ABSTRACT

Article history: Received 22 September 2012 Received in revised form 28 November 2012 Accepted 3 December 2012 Available online 12 December 2012

Keywords: A. Inorganic compounds B. Sol-gel growth C. X-ray diffraction C. Photoelectron spectroscopy

1. Introduction

Metal oxide nanoparticles have been researched intensively because of their prospective properties. Among them, $TiO₂$ has received a great deal of attention due to no harmful influence on environment, low cost, and high chemical stability. Moreover, $TiO₂$ nanoparticles have a unique optical property, so they are applied to many fields, such as UV-protection [\[1–3\]](#page--1-0), photochromic devices [\[4–6\]](#page--1-0), gas sensor [\[7\],](#page--1-0) dye-sensitized solar cells (DSSCs) [\[8,9](#page--1-0)], and photocatalyst [10-12]. TiO₂ have three crystalline phases in general: anatase, rutile, and brookite. Generally, anatase phase $TiO₂$ shows the best photocatalytic performance compared to the other crystal phase because anatase phase increases the surface redox potentials and improve the lifetime of electron–hole pair compared with rutile phase [\[10\].](#page--1-0)

Pt–TiO₂ composite particles have been widely studied for the improved photocatalytic performance on the degradation of various organic pollutants. By using $Pt-TiO₂$ composite particles as a photocatalyst, the charge carrier recombination rates can be reduced, so the photocatalytic performance is enhanced. The role of Pt nanoparticles coated onto the surface of $TiO₂$ is confirmed by measuring the $Fe³⁺$ -mediated photocurrents generation under UV-illumination [\[13\]](#page--1-0). The reason why the Pt-TiO₂ composite particles show higher photocurrent is that Pt nanoparticles on the surface of $TiO₂$ enhance the rate of interfacial electron transfer on $TiO₂$ and retard the charge recombination process.

Pt–TiO₂ composite particles were prepared by the alcohol reduction method in aqueous PVP solution and their photocatalytic performances for the degradation of methylene blue (MB) dye were investigated. The organosilane compound was used as a connecting agent between $TiO₂$ and Pt nanoparticles. X-ray photoelectron spectroscopy analysis revealed that the Pt-TiO₂ composite particles contained Ti, N, and Pt, and these results indicated that Pt nanoparticles were formed on the surface of $TiO₂$ particles. X-ray diffraction data showed that the Pt–TiO₂ composite particles had only the characteristic diffraction peaks of $TiO₂$ anatase structure. Pt-TiO₂ composite particles exhibited higher photocatalytic activity than bare $TiO₂$ particles for the degradation of MB.

 \odot 2012 Elsevier Ltd. All rights reserved.

The alcohol reduction method was employed in this study to prepare Pt-TiO₂ composite particles. This method has been studied to produce metal colloids and has been applied to the preparation of metal-supported composite particles because this method has been known as a chemical reducing agent free method [\[14–16](#page--1-0)]. In this method, the reducing rate of metal ions is relatively slow, so the size of metal nanoparticles can be controlled and the metal nanoparticles are coated onto the surface of TiO₂ uniformly. When a chemical reducing agent is added to the system, it is hard to control the size of metal particles because the reducing rate is very fast [\[15\]](#page--1-0).

In this study, the Pt–TiO₂ composite particles were prepared by alcohol reduction method with PVP. The spherical $TiO₂$ particles were selected in this study because they gave more reproducible results in the coating process compared to the particles of other shapes and they can be characterized relatively easily. The prepared composite particles were characterized by X-ray diffraction (XRD), field emission scanning electron spectroscopy (FE-SEM), energy dispersive spectrometer (EDS), highresolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS). In addition, the degradation of MB under UV irradiation was measured to evaluate the photocatalytic performances of $Pt-TiO₂$ composite particles.

2. Experimental procedure

2.1. Materials

The chemicals used in the synthesis were titanium (IV) isopropoxide (TIP, 97%, Sigma-Aldrich), 1-hexadecylamine (HDA,

 $*$ Corresponding author. Tel.: $+82$ 2 2220 0485; fax: $+82$ 2 2294 4568. E-mail address: [seongoh@hanyang.ac.kr \(S.-G. Oh\).](mailto:seongoh@hanyang.ac.kr)

^{0022-3697/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. <http://dx.doi.org/10.1016/j.jpcs.2012.12.001>

90%, Sigma-Aldrich), ethanol (EtOH, > 99.9%, Duksan), and potassium chloride (KCl, $>$ 99.5%, Fluka). The 3-aminopropyl trimethoxysilane (APTMS, 97%, Sigma-Aldrich) was used to bind Pt nanoparticles onto the surface of TiO₂ particle and chloroplatinic acid hydrate (H_2PtCl_6) , 499.9%, Sigma-Aldrich) was used as a Pt ion source. Sodium hydroxide (NaOH, $>97\%$, Sigma-Aldrich) was used as a pH controlling solution for the reduction of platinum ions and polyvinyl pyrrolidone (PVP, K-15, M_w 10,000, Junsei Chemical Co.) was employed as a nucleation-prompting agent and stabilizer for Pt nanoparticles onto $TiO₂$ surface. All chemicals were used as received without further purification. The water used in this study was deionized by Milli-Q Plus system (Millipore, France), having 18.2 M Ω electrical resistivity.

2.2. Synthesis of pure $TiO₂$ sphere particles

The pure $TiO₂$ spherical particles were synthesized by sol-gel method, as reported by Chen et al. [\[17\]](#page--1-0). The 1.324 g of HDA was dissolved in 157.8 g of ethanol, followed by the addition of 0.8 mL of KCl solution (0.1 M). To this solution, 4.224 g of TIP was added drop by drop under vigorous stirring at room temperature. After adding TIP, the resulting white $TiO₂$ suspension was kept static at room temperature for 12 h. Then, the $TiO₂$ spherical particles were collected by centrifuging, washed with ethanol three times and dried in air at room temperature. The resultant solid products were calcined at 450 \degree C for 2 h.

2.3. Preparation of Pt–TiO₂ composite particles

To prepare APTMS-functionalized TiO₂ particles, $1.0 g$ of synthesized TiO₂ particles was dispersed in 120 g of ethanol. The 0.036 mL of APTMS was added into the solution with stirring at room temperature for 3 h. The resulting precipitate was centrifuged and washed with ethanol, and the paste was dried at 70 \degree C for 24 h.

The alcohol reduction method was applied to the preparation of Pt–TiO₂ composite particles. The 0.3 g of APTMS-functionalized $TiO₂$ particles were dispersed into 77.15 g of ethanol and stirred for 1 h to mix together enough. And 0.1 g of PVP was completely dissolved in 20 g of ethanol. The H_2PtCl_6 solution, prepared by adding 1 g of H_2PtCl_6 into 2.73 g of ethanol, was added to the mixture solution and the loading rate of Pt nanoparticles is controlled by the amount of added H_2PtCl_6 solution (0.05, 0.1, and 0.2 g). The solution was heated and refluxed at 83 \degree C with stirring. When the mixture solution boiled, 2.05 g of NaOH aqueous solution (0.25 M) was added drop by drop. After 3 h, the color of the solution was turned from white to black. The final products were collected by centrifuging and washed with ethanol and dried at 70 \degree C for 24 h.

2.4. Characterizations

The morphologies of bare $TiO₂$, APTMS-functionalized $TiO₂$ and Pt–TiO₂ composite particles were investigated with FE-SEM (JEOL JSM-6701F). All samples were dried in vacuum oven at 70 \degree C and coated with carbon by sputtering at 15 mA for 3 min using a coating machine. HR-TEM images were taken through JEOL-2000EXII working at 2000 kV to study the surface morphology of the prepared particles. The samples of HR-TEM are obtained by dispersing a small dropping of the suspension with lower concentration onto a copper grid pre-coated with amorphous carbon. And then, the TEM grid was dried in drying oven at 40 \degree C for 1 day. The crystal forms of the prepared samples were measured by using X-ray diffraction (XRD) measurement. The XRD patterns were taken by a Rigaku-D/MAX RINT 2000 X-ray diffractometer using Cu K α radiation (λ =1.54 Å) at a scanning

of 10° min⁻¹. X-ray photoelectron spectroscopy (XPS) was used to investigate chemical bindings and the composition of the synthesized particles. The XPS data was taken by VG Multilab ESCA 2000 system. The surface area of P25, and bare $TiO₂$ particles which was synthesized in this study was measured by using BET (Belsorp-mini II).

2.5. Photocatalytic activities

MB degradation test under UV irradiation was conducted to evaluate the performance of Pt-TiO₂ composite particles as a photocatalyst. The 10 ppm MB solution was prepared and 0.1 g of prepared particles was added to the solution. The mixture was stirred for 1 h to obtain the equilibrium adsorption state. The reaction started as soon as the UV lamp (UVItec, dual wavelength, λ =365 nm, 254 nm) was turned on. The sampling time was 0, 40, 80, 120, and 160 min and the samples were centrifuged to remove the catalyst. The concentration of MB was measured by using a UV–vis spectrophotometer (Agilent 8453).

3. Results and discussion

3.1. Characterization of $Pt-TiO₂$ composite particles

APTMS was used as a chemical binder to immobilize Pt nanoparticles onto the surface of $TiO₂$ in this study. APTMS plays an important role in preparing $Pt-TiO₂$ composite particles. When APTMS is absent in this experiment, metal nanoparticles cannot be attached to the surface of $TiO₂$ homogeneously [\[16\].](#page--1-0) Moreover, APTMS treatment has some advantages, such as structural stability, uniform and complete coverage of the surface of $TiO₂$ particles with Pt nanoparticles [\[18\]](#page--1-0). The process of the formation for the Pt–TiO₂ composites is followed; the hydroxyl groups on the surface of $TiO₂$ react with the methoxy groups in APTMS, so the surface of $TiO₂$ can be functionalized with amine groups after the APTMS-functionalization process. And Pt nanoparticles are attached to the surface of $TiO₂$ by the electrostatic interaction between the amine groups of APTMS and Pt nanoparticles [\[16](#page--1-0),[19\]](#page--1-0).

Fig. 1 shows the XRD patterns of bare $TiO₂$ particles, APTMSfunctionalized $TiO₂$ and Pt-TiO₂ composite particles. Among the crystal structures of $TiO₂$, anatase phase is preferred because it shows a better photocatalytic performance. Fig. 1a indicates that the structure of $TiO₂$ is amorphous structure before calcination.

Fig. 1. XRD patterns of (a) not calcined TiO₂, (b) calcined TiO₂ at 450 °C for 2 h, and (c) APTMS-functionalized TiO₂, and (d) Pt-TiO₂ composite particles.

Download English Version:

<https://daneshyari.com/en/article/1515934>

Download Persian Version:

<https://daneshyari.com/article/1515934>

[Daneshyari.com](https://daneshyari.com/)