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a b s t r a c t

Popular kinetic methods of thermal analysis (TA) typically do not properly account for system dynamics
(relaxation processes) that give rise to distributed reactivity, referred to here as “dispersive kinetics of the
first kind”. In this work, new thermoanalytical relationships are put forth that allow more rigorous
treatment of dispersive kinetics via the well-known Avrami-Erofe’ev (A–E) model, as it applies to both
isothermal and non-isothermal (fixed heating/cooling rate) conditions. Simulated data is provided to
highlight the errors that can arise from combining classical (non-dispersive, Arrhenius-based) kinetic
treatments with the (dispersive) A–E mechanism. Lastly, “dispersive kinetics of the second kind” is
discussed in the context of heating (cooling) a sample faster than it can thermalize. As shown by
simulated data, doing so can impart dynamical effects even to conversions that would otherwise exhibit
classical Arrhenius behavior.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal analysis (TA)[1] allows determination of solid-state
kinetics using either isothermal or non-isothermal methods that,
in turn, can be model-based or model-free[2]. While various
thermal methods have been developed over recent decades, with
both new model-based[3] and model-free[4] (so-called “isocon-
versional”) methods continuing to be put forth, the substantial
variability/complexity often associated with the results does not
lend much confidence to the use of TA methods for performing
rigorous kinetic characterizations (or accurate rate predictions
based on them). That is especially true in light of the controversy
e.g.[5,6] that recently gripped the field, ultimately sparking a
significant undertaking designed to standardize both experimental
approaches and data treatments to try to reduce errors and ensure
the reproducibility of results[7–11]. Of interest here, it has been
stated that “kinetic parameters obtained by both isothermal and
non-isothermal experiments usually are not in agreement“ [12],
with examples of such being reported to the present time [13].

This work interrogates the basic hypothesis that it is the system
dynamics (relaxation effects) exhibited by many solid-state con-
versions that complicates their kinetic characterization, due to the
fact that such behavior is beyond the reach of popular thermal
methods. Such dynamical effects, which are often manifested as
“distributed reactivity” [14,15], require the use of dispersive kinetic
models (DKMs) in place of the classical kinetic models (CKMs)
typically found in the literature [2]. While all DKMs are under-
pinned by the concept of a distribution of activation energies [16],
it is noteworthy that for cases where the system relaxation is fast

relative to the conversion rate, the DKMs revert back to the CKMs
on which their derivation is based. That is because the condition of
fast relaxation allows the distribution to collapse to the classical
limit of a unique activation energy barrier (and the corresponding
Arrhenius rate constant, shown below). Thus, CKMs can be
considered to represent a special case of their more general,
DKM counterparts.

2. Theory behind traditional TA methods

2.1. Isothermal kinetics

Neglecting pressure (P) effects [1]1 on the kinetics, the rate is
often parameterized in terms of the extent of conversion, α, and
the temperature, T, starting with the equation [2]:

dα
dt

¼ kf ðαÞ ð1Þ

where f(α) is the differential form of the solid-state kinetic model
[2] applicable to the system under investigation and k is the rate
constant of the conversion. The Arrhenius equation is traditionally
used to relate the T-dependence of k

k¼ Aexp
−Ea
RT

� �
ð2Þ

where A is the Arrhenius constant2, Ea is the activation energy and
R is the universal gas constant. Together, Eqs. (1) and (2) yield the

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jpcs

Journal of Physics and Chemistry of Solids

0022-3697/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jpcs.2013.04.016

n Tel.: +1 908 361 1548.
E-mail address: skrdla@verizon.net

1 This is a major assumption for gas-evolving/consuming reactions, particularly
those in confined environments.

2 The frequency factor in the Eyring equation is T-dependent, so assuming A is
not T-dependent might be an important consideration for future error analyses.
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following result that “provides a basis for differential kinetic
methods” [2]:

dα
dt

¼ Aexp
−Ea
RT

� �
f ðαÞ ð3Þ

The analogous form to Eq. (3), for use in integral kinetic
methods, is written as follows [2]:

gðαÞ≡
Z α

0

dα
f ðαÞ ¼ A

Z t

0
e
−Ea
RT dt ð4Þ

where the term, g(α), defines the integral form of the conversion
model (that corresponds to f(α) in Eq. (3)). From Eq. 4 it is clear
that the familiar equality, g(α)¼kt, applies only to cases where
isothermal conditions are maintained and where k (or, likewise,
Ea) is independent of t, thus allowing the above integral to be
solved analytically.

Expressing Eq. (1) in logarithmic form and then taking its
differential with respect to T-1 yields the equation, below, at a fixed
value of α:

∂ln dα=dtÞ� �
∂T−1

� �
α

¼ ∂ln kð Þ
∂T−1

� �
α

þ ∂ln f ðαÞð Þ
∂T−1

� �
α

ð5Þ

Eq. 5 illustrates the so-called “isoconverisonal principle” that
states that the reaction rate at a constant extent of conversion is
only a function of temperature. Since at any given α, f(α) is also a
constant, the second term on the right hand side of the equation
effectively disappears. Introducing Eq. (2) into Eq. (5), one can
derive the relationship, below, from which it is easy to see why
many isoconversional methods are often called “model free“[2]:

∂ln dα=dtÞ� �
∂T−1

� �
α

¼ −
Ea
R

� �
α

ð6Þ

2.2. Non-isothermal kinetics

Given the prevalence of non-isothermal methods in the current
TA literature, it is of interest here that Eqs. ce:cross-refs
id¼"crs0040" refid¼"eq0015 eq0020">3 and 4 can also be used
to derive the following equations for application to non-isothermal
kinetics [2]:

β
dα
dT

¼ Aexp
−Ea
RT

� �
f ðαÞ ð7Þ

gðαÞ ¼ A
β

Z T

T0

e
−Ea
RT dT ð8Þ

Both Eqs. (7) and (8) use the standard definition of the heating
(cooling) rate given by the relationship, β¼dT/dt, whereby β¼(T
−T0)/(t – t0)¼constant for a fixed/linear gradient.

Eqs. (7) and (8) lay the foundation [2] of the differential,
isoconversional Friedman method [19] and the integral, isoconver-
sional methods of Dolye [20], Ozawa [21] and/or Flynn and Wall
[22], Kissinger/Akahira/Sunose [23], Vyazovkin [24] and, more
recently, Li and Tang [25], Cai and Chen [26], Roduit [27], as well
as Farjas and Roura [4]. The latter methods numerically solve the
so-called “temperature integral”, shown in Eq. 8, with evermore
precise/rapid approaches. Eq. 7 and Eq. 8 also gave birth to the
non-isothermal method of Kissinger [28] (that allows fitting
kinetic data to a reaction model) and the non-isothermal,
model-fitting methods of Freeman and Carroll [29,30] as well as
Coats and Redfern [31,32].

3. Results and discussion

3.1. Dispersive kinetics of the first kind

The inherent heterogeneity of condensed phased matter can
impart variation to the activation energy of conversions that can
manifest itself in kinetic data, via dynamical/relaxation effects, in
the form of sigmoidal (S-shaped) conversion transients observed
under isothermal conditions [33]. An example of that kind of
heterogeneity is the different spatial locations/environments of
monomers in a given crystal lattice (e.g., interfacial versus interior/
bulk sites). In cases where the rate-limiting step of the conversion
involves the formation/dissociation of nuclei, those energy differ-
ences can become increasingly important because as the particles
become smaller, the relative energy differences among the mono-
mers get larger. Such variation can lead to distributed reactivity
that necessitates treatment via dispersive kinetic theory/DKMs
[14], as opposed to classical Arrhenius kinetics/CKMs.

Examples of processes that exhibit inherent dispersive kinetic
behavior include nucleation and denucleation rate-limited con-
versions, for which relevant relationships have been presented in
detail elsewhere [14]. Those conversions exhibit a dynamical
evolution of k with t under isothermal conditions that stems
directly from the underlying distribution of activation energies
[16]. Traditional thermal methods based on Eq. (2), which depicts
a unique rate constant, are clearly ill-equipped to handle such
systems [15].

For illustrative purposes, the Avrami-Erofe’ev (A–E) model is
considered in this work because it is widely used in the TA
literature [2], yet it has also been discussed, separately, to be a
DKM [16]. The A–E model has a general form, of dimensionality n,
that can be written as

f ðαÞ ¼ nð1−αÞ½−lnð1−αÞ�ðn−1Þ=n ; gðαÞ ¼ ½−lnð1−αÞ�1=n ð9Þ
The dispersive kinetic nature of the model can be seen from

the rate coefficient (not constant), k, which has the following t-
dependence [34]:

k¼ k0tn−1 ; 0on≤1 ð10Þ
where k0 is the classical rate constant (corresponding to Ea

0, as per
Eq. (2)) for the conversion in the absence of the inherent
dynamical effects. Indeed, if n¼1, i.e., provided that the system
relaxation dynamics are much faster than the specific conversion
rate (of the rate-limiting step of interest), then the A–E mechanism
reduces to the “F1” CKM [2].

Eq. (10) gives rise to the following relationship [34] for the
evolution of Ea as a function of t:

Ea ¼ E0a þ ð1−nÞRT lnðk0tÞ ð11Þ
that has been reported elsewhere [16,34].
For dispersive kinetic conversions obeying the A–E mechanism,

under a fixed heating (cooling) rate, the non-isothermal Eq. (7)
gives rise to the following relationship

βn
dα
dT

¼ Aexp
−E0a
RT

 !" #
ðT−T0Þn−1

( )
nð1−αÞ½−lnð1−αÞ�ðn−1Þ=n
n o

ð12Þ
Similarly, under equivalent conditions, Eq. (8) yields:

−lnð1−αÞ� 	1=n ¼ A
βn

Z T

T0

e
−E0a
RT T−T0ð Þn−1dT ð13Þ

While Eqs. (12) and (13) differ from the relationships normally
found in the TA literature, they are thought to more accurately
reflect the A-E mechanism in that they properly account for the t
(T)-dependence of k presented in Eq. (10). Note also that the
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