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Equilibrium molecular dynamics based Einstein relation with an appropriate definition for integrated
heat current (i.e., with modified energy moment) are combined to quantify the thermal conductivity of
individual single-walled carbon nanotubes, armchair, zigzag and chiral tubes. The thermal conductivity
has been investigated as a function of three parameters, tube radius, length and chirality at and near
room temperature with Brenner potential model. Thermal conductivity is found to have unusually high
value and varies with radius, length and chirality of tubes. Also the thermal conductivity at temperature
range from 50 to 100K is found to have a maximum value. For 12.1 nm tube length, the thermal
conductivity has converging trend which its value dependents on the tube radius and chirality. Tubes
with large radius have lower values of thermal conductivity. Furthermore, the results show that armchair
tubes have large values of the thermal conductivity comparing with zigzag and chiral tubes. It seems
possible to uncover carbon nanotubes thermal properties based on measurements having heat
dependence by adding another methods for calculations.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the heat conduction in single-walled carbon
nanotubes (SWNTSs) is very important. The unique physical proper-
ties and potential applications of carbon nanotubes (CNTs) have
been well documented since their discovery, using both theory
and experiment [1-6]. The electronic properties of singled-walled
carbon nanotubes (SWNT) are largely dependent on the atomic
structures of individual CNTs, which can be accurately defined
using the tube diameter d = ¢v/n? + nm + m? and helical angle u
6= tan‘l(%) [7]. The indices (n,m) of single-walled carbon
nanotubes are crucially important for the electronic properties of
the nanotubes. Tubes for which n-m=3i, with i an integer, are
metallic; all other are semiconductors. Both the semiconductors
and metallic types of nanotubes may be of use for nanoscale
electronic devices. CNTs have bright prospects for applications:
they can be used to fabricate field emission devices, tips for
scanning probe microscopy instruments, and constituents of
nanoelectronics devices [8-11]. The thermal properties of CNTs,
such as thermal conductivity, have been proposed as attractive for
thermal transport management in ultra large-integration chips
due to high heat flow along the axis of CNTs [12-15]. This new
class of one dimensional carbon could have a thermal conductivity
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equal to or greater than that of diamond and graphite [16]. Berber
et al. [17] predicted CNTs to have an unusually high thermal
conductivity associated with a large phonon mean free path by
virtue of the molecular dynamics simulations.

There are mainly two approaches to study theoretically the
thermal conduction phenomena of nanoscale materials: first
approach is a macroscopic method using continuum models and
kinetic theories, such as Boltzmann transport equation [18,19].
A second approach is a fundamental microscopic method based on
the first principles atomistic simulations or quantum mechanics
models. This approach is particularly useful for nanoscale devices
where the experimental determination of the thermal conductiv-
ity is quite challenging. In this approach, various methods are
proposed to model the physical system and calculate the thermal
conductivity. These methods include equilibrium and no equili-
brium molecular dynamics (MD) simulation. These methods study
the physical system from scratch and make little empirical
assumptions.

Two main components are contributed in the thermal con-
ductivity: (a) an electronic component and (b) a lattice compo-
nent. In the present paper, only the lattice contribution to thermal
conductivity of carbon nanotubes is considered using atomistic
simulations. The electronic contribution to thermal conductivity is
very small and can be neglected in materials with relatively large
band gaps. As far as the carbon nanotubes are concerned, the size
of their band gap is found to be dependent on their chirality
(screw symmetry) as well as on their diameter and length. Many
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theoretical studies were done for thermal conductivity of carbon
nanotubes based on Green-Kubo expression [19] that relates this
quantity to the integral over time t of the heat flux autocorrelation
function [17,20]. The results were an unusually high thermal
conductivity for isolated (10,10) nanotubes at room temperature
and at T=100K the the thermal conductivity has a maximum
value [17]. The effect of the chirality, radius and length of carbon
nanotubes can also affect the lattice contribution to the thermal
conductivity and actually there are a lot of theoretical and
experimental studies focused on thermal conductivity of SWNTs
[21-27]. The thermal conductivity for an isolated SWNT is not a
well defined quantity, since the cross section of the heat conduc-
tion can be chosen in various ways. In the present work, we
consider tube as a solid cylinder with circle cross section area
equal to zd?/4. Of course, the values of the thermal conductivity
change with consider a hollow cylinder with cross section area
equal to do/2, where § is the thickness of the wall equal to 0.34 nm.
But still the behavior of the thermal conductivity of SWNTs does
not depend on value of cross section area. Therefore, there are
different values of thermal conductivity with different definitions
of the cross section area. Our main goal of this study is how the
thermal conductivity varies with tube parameters, radius, length
and the chirality, as well as to obtain its value. Three types of
SWNTs, armchair, zigzag and chiral tubes are investigated over a
temperature range 50-400 K.

For these purposes, we apply the Einstein relation with energy
moment formulation suggested by Kinaki et al. [28]. This method
was also tested by Kinaki et al. [28] and they found that it
produced a corrected thermal conductivity and overcomes some
of the difficulties encountered when they calculated heat current
for solid argon and silicon. Model potential is requires in our
calculations and we are select the Brenner potential.

2. Computation of thermal conductivity using MD

In MD simulation, the classical position and momentum space
trajectory of a system of particles are determined using intera-
tomic forces (which are calculated from an appropriate potential-
energy function), Newton's second law, equations of motion with
the velocity Verlet algorithm are used to calculate the new
positions and velocity and then the force on the atoms. The net
flow of heat in such a system, given by the heat current vector J
that indicates the magnitude and direction of the flow of heat in a
system, fluctuates about zero at equilibrium. In an equilibrium
system and in the Green-Kubo method, the thermal conductivity
is related to how long it takes for these fluctuations to dissipate,
and is given as [29]
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where Kz is the Boltzmann constant, V is the volume of the
simulation cell, and (J{t)J{0)) is the heat flux autocorrelation
function (HFACF). The heat flux for many-body potential is given
by [29]
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where e;, ri(t) and ry(t) are total energy, time-dependent
coordinate of atom i and the nearest distance, respectively, and
fij the interaction force on i atom due to j atom. The first term in Eq.
(2) corresponds to the contributions of convection and the second
term corresponds to conduction. In MD simulations, the total
potential energy can be divided among atoms: the site energy e;(t)

can be taken to be

e; = %m,-v,-2 + %%}u(rij). 3)
In the above equation, u(ry) is in fact a many-body potential
[30,31]. First and second terms are the total kinetic and potential
energy of atom i. It has been shown that the thermal conductivity
of a crystal with a monatomic unit cell can be decomposed into
contributions from short and long scale interactions for acoustic
phonons by fitting the HFACF to a function of the form [15,32]:

Jy(0)J5(0))=Asexp(-t/zs) + Alexp(~t/z)) “)

The A terms are constants, and the r terms are time constants.
Using Eqs.(l) and (4), we have

A= KBT2 (Asts + Azy) €)]

The short-range component is associated with phonons with a
mean free path less of their wavelength while the long-range
component describes phonon with longer mean free paths. The
short-range component and its associated time constant are
independent of the temperature while the long-range component
is temperature dependent and it accounts for majority of thermal
conductivity.

The energy moment R(t) and heat current, J(t), which appears
in Eq. (2) are
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The heat current, J(t), is the time derivative of R(t)

dR(t)
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The thermal conductivity via Einstein relation as related to
doubly integrated form of the expression is given
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Kinaci et al. [28] proposed an expression for energy moment, R
(t), and they separated it into potential R, and kinetic R contribu-
tions. The modified form for the potential energy portion of R, R,
is [28]
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The transfer of kinetic energy from atom i to all atoms that
interact with it is mediated by power term f v. The kinetic portion
then can be written as [28]
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where fij represents the force on atom i due to j.

The kinetic part does not depend explicitly on the potential
form and by simply rearranging the summation as [28]:
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where the summation over atoms that make up n-body interaction
groups.

They found that this new formula of R(t) gives a proper thermal
conductivity and can be reduced numerically to give the exact
value of J(t).

The empirical interatomic interaction used in our calculation is
Brenner-type of the bond order dependent potential [30-33]. The
Brenner potential is widely used in modeling carbon based system
such as diamond, graphite sheet, fullerenes and carbon nanotubes.
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