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a b s t r a c t

Hydrocracking is a crucial process in refineries and suitable model is useful to understand and design
hydrocracking processes. Simulating the procedure from RNA to protein, a protein inspired RNA genetic
algorithm (PIRGA) is proposed to estimate the parameters of hydrocracking of heavy oil. In the PIRGA,
each individual is represented by a RNA strand and a new fitness function combining traditional fitness
value and individual ranking is employed to maintain population diversity. Furthermore conventional
crossover operators are replaced by RNA-recoding operator and protein-folding operators to improve
the searching ability. An adaptive mutation probability in the PIRGA makes the algorithm have more
chance to jump out of local optima. Numerical experiments on seven benchmark functions indicate that
the PIRGA outperforms other genetic algorithms on both convergence speed and accuracy greatly. 10
parameters are obtained by the PIRGA and the kinetic model for hydrocracking of heavy oil is established.
Experimental results reveal that the predictive values are in good agreement with the experimental data
with relative error less than 5%. The effectiveness and the robustness of the model are also validated by
experiments.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The conflict of growing demands of middle distillates with
overabundance of heavy crude oils makes people focus on hydro-
cracking technique and hydrocracking is increasingly becoming a
crucial secondary petroleum refinery processes to treat heavy oil,
such as vacuum resid. The main objective of this process is to con-
vert heavy molecules like vacuum gas oil (VGO) into lighter and
more valuable fractions such as naphtha, gasoline, and hydrogen
gas. Different approaches have been utilized for kinetic modeling of
hydrocracking, varying from the most common and used lumping
technique to more complex models based on continuous mixture or
single events. A comprehensive review of hydrocracking modeling
can be found in [1].

Accurate analytical or numerical modeling of these new upgrad-
ing processes is essential, in order to correctly interpret experiment
measurements and to lead to a better understanding and design of
industrial-scale processes. However, many undesirable and com-
plicated reactions in hydrocracking process bring an arduous task
to make a reasonable tradeoff between accuracy and complexity
of modeling. Usually, people consider these reactions dominant
and significant in all reaction and neglect tiny ones. After getting
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mechanism model of hydrocracking processes, determination of
model parameters is also difficult by conventional deterministic
optimization methods [2]. Most deterministic optimization meth-
ods encounter some deficiencies such as sensitive to initial value
and/or requiring of differentiable information of optimized prob-
lems.

Genetic algorithms (GAs) first developed by Holland are stochas-
tic search technique based on the mechanism of natural selection
and survival of the fittest [3,4]. Those individuals with higher fitness
value are assigned higher survival probability. Genetic algorithms
do not tackle problems directly but in a chromosome space, i.e.,
candidate solutions of an optimization problem are converted to
chromosome firstly. Due to no requirement of prior information
about search space and owning excellent global search ability, GAs
have been applied widely to address complicated real-world prob-
lems with non-differentiable, non-convex and non-linear [5–10].

Despite successful applications of GAs to optimization prob-
lems, traditional genetic algorithms suffer from slow convergence
speed and poor local searching ability. Furthermore, simple oper-
ators of GAs limit their searching efficiency in searching space
and redundant search dominates the whole procedure. In order to
overcome these drawbacks of GAs, some improved genetic algo-
rithms simulating biological behavior emerged. Inspired by DNA
molecular structure and operators, Tao et al. proposed a RNA
genetic algorithm, which adopts quaternary encoding and three
RNA molecular operators to improve the searching capability of
GAs [11]. Wang et al. presented a novel RNA genetic algorithm to
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Nomenclature

N population size
M individuals number in mating pool
l length of RNA individuals
Fi original fitness value of individual i
F ′

i
new fitness value of individual i

Ri ranking number of individual i
Nbest population size of neutral group
n1 number of left-shift steps
n2 number of right-shift steps
PRNA-recoding probability of RNA-recoding operator
Pmutual-folding probability of protein mutual-folding operator
Pself-folding probability of protein self-folding operator
Pm mutation operator probability
Gmax number of maximal generations
D dimensions of benchmark functions
g generation number
VGO vacuum gas oil
ri reaction rate of product composition i
ωi mass fraction of product composition i
E relative error
T0 starting time of collecting data
Tt stopping time collecting data
yi(nt) experimental data of composition i at time of nt
ŷi(nt) predictive value of composition i at time of nt

make a reasonable tradeoff between searching accuracy and com-
putational efforts by introducing a new RNA molecular operator,
stem-loop operator, and two different fitness values. Computa-
tional results showed that this RNA genetic algorithm solved three
parameter estimation problems of dynamic systems successfully
[12]. Chen et al. developed another DNA genetic algorithm to
address parameter estimation problem in hydrogenation reaction
well [13]. Tao et al. and Chen et al. suggested two different hybrid
genetic algorithms incorporating DAN double helix genetic algo-
rithm and sequential quadratic programming (SQP) for gasoline
blending scheduling problems [14,15].

Simulating RNA molecular operators and procedure from DNA
to protein in biological cell, a protein inspired RNA genetic algo-
rithm (PIRGA) is proposed in this work. In this algorithm, we
first encode each individual with a strand of nucleotide bases,
RNA strand. Then RNA-recoding operator and protein-folding oper-
ators are designed to replace conventional crossover operators
to improve the performances of GAs. Apart from encoding pro-
cedure, RNA strands are first translated into amino acids ones,
protein strands, according to triplet codons in decoding proce-
dure. Numerical solutions on seven benchmark functions, varying
from two-dimensional to ten-dimensional, show the superiority
of the PIRGA in contrast to other genetic algorithms. The parame-
ters estimation problem in hydrocracking kinetic model is also well
addressed by the proposed genetic algorithm.

2. Protein inspired RNA genetic algorithm (PIRGA)

2.1. Representing and decoding

DNA is the major genetic material for life and contains plentiful
genetic information. DNA molecular owns a double helix struc-
ture and during DNA replication and transcription, the double helix
must be separated transiently and reversibly. Because the sepa-
rated antisense strand, RNA individual, contains almost all useful
information of DNA and is simpler on structure than DNA molecu-
lar, RNA is also regarded as main genetic material of living cells. RNA

Table 1
Relationship between triplet codons and 64-ary integers.

First nucleotide Second nucleotide Third nucleotide

U C A G

U 0 4 8 12 U
U 1 5 9 13 C
U 2 6 10 14 A
U 3 7 11 15 G
C 16 20 24 28 U
C 17 21 25 29 C
C 18 22 26 30 A
C 19 23 27 31 G
A 32 36 40 44 U
A 33 37 41 45 C
A 34 38 42 46 A
A 35 39 43 47 G
G 48 52 56 60 U
G 49 53 57 61 C
G 50 54 58 62 A
G 51 55 59 63 G

contains 4 kinds of nucleotides: Adenine (A), Uracil (U), Guanine (G)
and Cytosine (C). In the PIRGA, all individuals are represented by

RNA strands and the encoding space is E =
{

A, U, G, C
}l

, where l is
the length of RNA strands (All strands are the same length in the
PIRGA).

In genetic code, a three-letter codes, triplet codon, decides a
amino acid, i.e., three nucleotides in RNA strand decide a amino
acid by the translating operator. On the decoding procedure of the
PIRGA, RNA strands are first translated into amino acid strands, pro-
tein ones. In biological field, 20 kinds of common amino acids are
recognized by codons, and some different triplet codons decide the
same amino acid. Though the degeneracy of triplet encoding in cell
plays an important role in reducing replication error and abnor-
mal mutation, in GAs we hope individuals and candidate solutions
are one–one relationship which can reduce computational costs in
searching procedure. Hence on decoding procedure, RNA strands
are first translated into 64-ary. The relationship between triplet
codons and 64-ary integers is shown in Table 1.

After translating operator individuals are represented by amino
acid ones, i.e., integer sequences between [0,63] which are easy
to convert to real-values in domain of an optimization problem.
This indirect decoding method first translates RNA individuals into
amino acid sequences and then these 64-ary amino acid strands are
converted to real-values. The length of RNA individuals is decided
by variable number of problem and precision. For example, there
are n variables and each variable is represented by m 64-ary inte-
ger. The length of RNA individuals is l = 3 × n × m. The decoding
procedure is shown in Fig. 1.

Encoding procedure is a mapping from solution space to RNA
encoding space, i.e., RNA strands are adopted to represent individ-
uals in the PIRGA. Subsequently, these RNA individuals change their
forms in the encoding space by some RNA and protein molecular
operators. When the algorithm terminated, Optimization results
are obtained by decoding procedure, which is an inverse mapping
from RNA space to problem space. In other words, the encoding
and the decoding procedures complete a mutual mapping between
solution space and RNA operator space.

Fig. 1. Decoding procedure.
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