ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

Antiferromagnetic phase transition in garnet-type $AgCa_2Mn_2V_3O_{12}$ and $NaPb_2Mn_2V_3O_{12}$

Junji Awaka a,*, Shuji Ebisu a, Masakazu Ito b, Shoichi Nagata a

- ^a Department of Applied Sciences, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
- ^b Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-35, Kagoshima 890-0065, Japan

ARTICLE INFO

Article history:
Received 7 June 2011
Received in revised form
31 October 2011
Accepted 22 November 2011
Available online 2 December 2011

Keywords:

A. Inorganic compounds

A. Oxides

D. Magnetic properties

D. Specific heat

ABSTRACT

Ferrimagnetism has been extensively studied in garnets, whereas it is rare to find the antiferromagnet. Present work will demonstrate antiferromagnetism in the two Mn–V-garnets. Antiferromagnetic phase transition in AgCa₂Mn₂V₃O₁₂ and NaPb₂Mn₂V₃O₁₂ has been found, where the magnetic Mn²⁺ ions locate only on octahedral A site. The heat capacity shows sharp peak due to antiferromagnetic order with the Néel temperature T_N =23.8 K for AgCa₂Mn₂V₃O₁₂ and T_N =14.2 K for NaPb₂Mn₂V₃O₁₂. The magnetic entropy change over a temperature range 0–50 K is 13.9 J K⁻¹ mol-Mn²⁺-ions⁻¹ for AgCa₂Mn₂V₃O₁₂ and 13.6 J K⁻¹ mol-Mn²⁺-ions⁻¹ for NaPb₂Mn₂V₃O₁₂, which are in good agreement with calculated value of Mn²⁺ ion with spin S=5/2. The magnetic susceptibility shows the Curie–Weiss behavior over the range 29–350 K. The effective magnetic moment $\mu_{\rm eff}$ and the Weiss constant θ are $\mu_{\rm eff}$ =6.20 $\mu_{\rm B}$ Mn²⁺-ion⁻¹ and θ = –34.1 K (antiferromagnetic sign) for AgCa₂Mn₂V₃O₁₂ and $\mu_{\rm eff}$ =6.02 $\mu_{\rm B}$ Mn²⁺-ion⁻¹ and θ = –20.8 K for NaPb₂Mn₂V₃O₁₂.

 $\ensuremath{\text{@}}$ 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The garnet-type oxides have been considerable attraction in the field of materials science, for example, $Y_3Fe_5O_{12}$ and its family as magnetic materials, rare-earth-doped $Y_3Al_5O_{12}$ crystals as optical materials, and $R_3Ga_5O_{12}$ (R: rare earth) as adiabatic demagnetization refrigeration materials [1–3]. More recently, Li₆BaLa₂ Ta₂O₁₂, and Li₇La₃Zr₂O₁₂ having garnet-related type structure have gained attention as solid-state electrolyte of all solid-state rechargeable batteries because of their good lithium conduction properties [4–8]. On the other hand, garnet-type oxides have been investigated in the field of solid-state physics. In particular, their magnetic properties have been studied in wide aspects both theoretically and experimentally [1,9–15].

Vanadate garnets [16–22] can provide the diluted magnetic system where magnetic ions locate only on A site, or non-magnetic system. Recently, we have reported that the V-garnets of $AgCa_2Co_2V_3O_{12}$ and $AgCa_2Ni_2V_3O_{12}$ exhibit the antiferromagnetic phase transition with the Néel temperature T_N =6.39 K and T_N =7.21 K, respectively [19]. The crystal and magnetic structure have been identified with X-ray [20,21] and neutron powder diffraction studies [22], in our previous reports for $AgCa_2Co_2V_3O_{12}$, $AgCa_2Ni_2V_3O_{12}$, $AgCa_2Mn_2V_3O_{12}$, and $NaPb_2Mn_2V_3O_{12}$. The detailed magnetic and thermal properties have been carried out for $AgCa_2Co_2V_3O_{12}$, and $AgCa_2Ni_2V_3O_{12}$.

E-mail address: j-awaka@mmm.muroran-it.ac.jp (J. Awaka).

In this work, we focus on a systematic experimental study of thermal and magnetic properties of two Mn–V-garnets $AgCa_2Mn_2$ V_3O_{12} and $NaPb_2Mn_2V_3O_{12}$, which is an extension of our previous works of V-garnets. A lot of studies concerned with ferrimagnetism have been published for many garnets. The antiferromagnetism has not been studied in detailed for the garnets so far, except our previous study [19]. Present work demonstrates an antiferromagnetism in the Mn–V-garnets.

The garnet-type structure has cubic symmetry of the spacegroup Ia-3d (no. 230). The general structural formula can be represented as $\{C_3\}[A_2](D_3)O_{12}$, where C (the multiplicity and the Wyckoff letter: 24c), A(16a), and D(24d) sites are the cation sites. The C, C, and C cation sites are surrounded by C^{2-} ions at the dodecahedron, octahedron, and tetrahedron, respectively. Fig. 1 shows crystal structure of C0 AgC12C11. The structure images were drawn using a computer program VESTA [23], C12C11. The structure images were drawn using a computer program VESTA [23], C12C11. The structure images were drawn using a computer program VESTA [23], C12C111. The structure images were drawn using a computer program VESTA [23], C12C1111. The structure images were drawn using a computer program VESTA [23], C12C1111. The structure images were drawn using a computer program VESTA [23], C12C1111. The structure images were drawn using a computer program VESTA [23], C2111. The structure images were drawn using a computer program VESTA [23], C2111. The structure images were drawn using a computer program VESTA [23], C2111. The structure images were drawn using a computer program VESTA [23], C2111. The structure images were drawn using a computer program VESTA [23], C3111. The structure images were drawn using a computer program VESTA [23], C3111. The structure images were drawn using a computer program VESTA [23], C3111. The structure images were drawn using a computer program VESTA [23], C3111. The structure images were drawn using a computer program VESTA [23], C3111. The structure images were drawn using a computer program VESTA [23], C3111. The structure images were drawn using a computer program VESTA [23], C3111. The structure images were drawn using a computer program VESTA [23], C3111. The structure images were drawn using a computer program VESTA [23], C3111. The structure images were drawn using a computer program VESTA [23], C31111. Th

2. Experimental methods

Preparation conditions of polycrystalline $AgCa_2M_2V_3O_{12}$ (M=Mn, Zn) and $NaPb_2Mn_2V_3O_{12}$ are reported in Ref. [16,17,21]. Polycrystalline $NaPb_2Zn_2V_3O_{12}$, as an isotypic non-magnetic V-garnet, was also

^{*} Corresponding author.

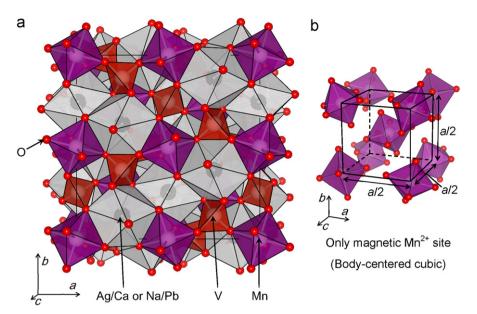


Fig. 1. (a) Crystal structure and (b) only magnetic Mn²⁺ site with body-centered cubic for AgCa₂Mn₂V₃O₁₂ and NaPb₂Mn₂V₃O₁₂.

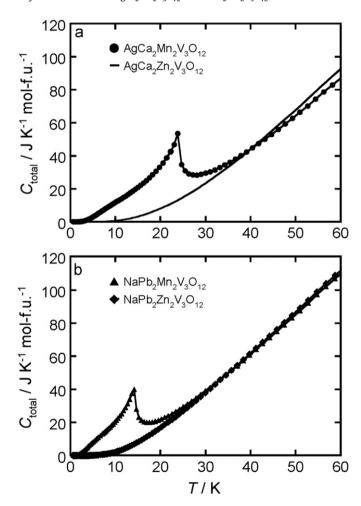
synthesized by solid-state reaction. The starting materials (purity >99.9%) of Na $_2\text{CO}_3$, PbO, ZnO, and V $_2\text{O}_5$ were mixed in the calculated ratio. Mixed powder materials were heated to 1023 K for 24 h. The synthesis results of NaPb $_2\text{Zn}_2\text{V}_3\text{O}_{12}$ are summarized in the supplementary file (Appendix A).

The heat capacity C_P was measured over the range 0.6–60 K in zero-field by a relaxation method using a commercial calorimeter (Quantum Design, PPMS equipped with a heat capacity option). The dc magnetic susceptibility χ was measured over the range 2.0–350 K under zero-field-cooled (ZFC) and field-cooled (FC) conditions using an rf-SQUID magnetometer (Quantum Design, MPMS) in an applied field of H=0.1 kOe, 5.0 kOe, and 10 kOe.

3. Results and discussion

3.1. Heat capacity

3.1.1. Measured heat capacity


Fig. 2 shows measured heat capacity $C_{\rm total}$ per molar formulaunit as a function of temperature for (a) AgCa₂ M_2 V₃O₁₂ (M=Mn, Zn [19]), and (b) NaPb₂ M_2 V₃O₁₂ (M=Mn, Zn). Mn–V-garnets AgCa₂Mn₂V₃O₁₂ and NaPb₂Mn₂V₃O₁₂ exhibit a sharp peak due to the antiferromagnetic phase transition at the Néel temperature of T_N =23.8 K and T_N =14.2 K, respectively. On the other hand, Zn–V-garnets AgCa₂Zn₂V₃O₁₂ and NaPb₂Zn₂V₃O₁₂ are non-magnetic.

The measured heat capacity of $AgCa_2Mn_2V_3O_{12}$ and $NaPb_2Mn_2V_3O_{12}$ exhibits the slight increase with decreasing temperature below about 1.0 K, while the increase is not found in $AgCa_2Zn_2V_3O_{12}$ and $NaPb_2Zn_2V_3O_{12}$. We presumed the increase indicates the tail of the nuclear–spin heat capacity due to the nuclear Zeeman effect of Mn nucleus, discussed below.

The magnetic heat capacity $C_{\rm magnetic}$ of $AgCa_2Mn_2V_3O_{12}$ and $NaPb_2Mn_2V_3O_{12}$ is obtained by means of the subtraction of lattice heat capacity $C_{\rm lattice}$ and nuclear–spin heat capacity $C_{\rm nuclear}$ from the measured heat capacity ($C_{\rm magnetic} = C_{\rm total} - C_{\rm lattice} - C_{\rm nuclear}$).

3.1.2. Lattice heat capacity

The heat capacities of $AgCa_2Zn_2V_3O_{12}$ [19] and $NaPb_2Zn_2V_3O_{12}$ do not exhibit any magnetic anomaly, and then the lattice heat capacity is only observed that ($C_{total} = C_{lattice}$).

Fig. 2. Heat capacity C_{total} as a function of temperature for (a) $AgCa_2M_2V_3O_{12}$ (M=Mn, Zn [19]) and (b) $NaPb_2M_2V_3O_{12}$ (M=Mn, Zn).

The curve of $NaPb_2Zn_2V_3O_{12}$ in Fig. 2(b) shows only lattice heat capacity, following the Debye T^3 approximation, below 4.2 K.

$$C_{lattice} = \left(\frac{12}{5}\right) \pi^4 N_{\rm A} k_{\rm B} r \left(\frac{T}{\Theta_{\rm D}}\right)^3 = 1943.8 r \left(\frac{T}{\Theta_{\rm D}}\right)^3, \tag{1}$$

Download English Version:

https://daneshyari.com/en/article/1516606

Download Persian Version:

https://daneshyari.com/article/1516606

Daneshyari.com