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a b s t r a c t

On the basis of an appropriate four-oscillator version of a representative dispersion-related hybrid

model we perform detailed analyses of isobaric heat capacity data available for cubic ZnS, ZnSe, ZnTe,

CdTe, HgSe, and HgTe. Characteristic non-Debye behaviours of the Cp(T) data sets under study, which

are manifested above all in form of non-monotonic dependences (maxima) of the respective Cp(T)/T3

curves in the cryogenic region, are described in terms of two Einstein oscillators for short-wave

transversal acoustic (TA) phonons in combination with relatively weak components of Debye and non-

Debye type due to long-wave acoustic phonons. This prominent non-Debye feature is represented

alternatively in the form of non-monotonic dependences (minima) of conventional Debye temperature

curves, YD(T). The close correlation between the low-temperature asymptotic (decreasing vs. increas-

ing) sections of YD(T) vs. Cp(T)/T3 curves is described by simple algebraic formulae. The maxima

positions of the latter are shown to be nearly proportional to the centre of gravity positions of the

respective TA phonon spectra sections. The inherent non-Debye nature of the whole phonon density of

states (PDOS) spectra is shown to find its global expression in characteristic snakelike shapes of the

equivalent, moment-related phonon energy curves.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For almost a whole century, the development of the theory and
of experimental investigations of heat capacities of solids was
largely dominated by an enormous number of papers referring
primarily to the well-known Debye theory [1–7]. The main cause
of the predominant consideration of this simple model may be
ascribed to some remarkable initial successes consisting, above
all, in a plausible explanation of the commonly expected cubic
asymptotes, Cp(T-0)pT3 [1–9], for limiting lattice heat capacities
in solids. Moreover, this model was found to be capable of
providing, especially for a variety of cubic metals [1–3], some
satisfactory simulations of Cp(T) dependences from cryogenic to
room temperatures, by adopting even fixed values for material-
specific Debye temperatures, YD. On the other hand, in contrast to
such initial successes, no satisfactory simulations of Cp(T) depen-
dences could be provided in analogous way (at fixed YD) e.g. for
Si and Ge [10–15] and large varieties of binary III–V [13,15,16–28]
and II–VI [13,15,19,29–41] materials.

The inherent non-Debye nature of PDOS spectra of these
materials is clearly revealed by the results of the conventional
numerical assessment procedures consisting in point-by-point
transformations of given Cp(T) values into corresponding Debye

temperature values (see e.g. [3–7,9,14,15,17]). Actually, these
transformations are leading as a rule to respective sets of YD(T)
values that turned out to be strongly dependent on T, especially in
the cryogenic region [10–41] (see also below). The wealth of
corresponding YD(T) estimations published during the past 50
years shows, among other things, that it is largely useless to
cultivate nowadays the obviously illusionary idea [42–45] of
fitting Cp(T) data for various binary materials (like GaN [44] or
MgO and ZnO [45]) strictly on the basis of the original Debye
model [1], with a constant YD (merely by increasing enormously
the accuracy of numerical calculations [42–45] of the respective
Debye function integrals).

Further indications for a global non-Debye nature can be readily
found e.g. via partial analyses of given Cp(T) data sets using the
exponential series representation for heat capacities [46]. A sig-
nificant advantage of this unconventional analysis scheme [46] (as
briefly sketched in Section 2) is due to the fact that it enables good
analytical and numerical simulations of large sections of given
Cp(T) curves without involving one or the other type of a hypothe-
tical ansatz for the phonon density of states (PDOS) spectral
function, gP(e). We show in Section 2 that the actual shapes of
Cp(T) functions, for the materials under study, are qualitatively
largely different from the conventional pattern implied by Debye’s
very special model, gD(e)pe2 [1,14]. This observation gives a clear
evidence of an inherently non-Debye character of the heat capacity
behaviours in consideration. Unfortunately, this elegant analysis
procedure [46] is not applicable to very low temperatures (regions
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where the magnitudes of Cp(T) are lower than about 20% of the
classical Delong–Petit limiting value). More elaborate analytical
models of non-Debye type are thus required for duly comprehen-
sive descriptions of heat capacity behaviours, from T¼0 to room
temperature.

A principal alternative to Debye’s fictitious PDOS model func-
tion [1] is well known to be given by Einstein’s suggestion of a
single discrete peak [47]. Generalizations of this obviously over-
simplified model in the form of certain combinations of several

discrete peaks, with properly adjusted weights, have been repeat-
edly found [39,48–50] to be capable of providing good simulations
of given Cp(T) data sets, from cryogenic to room temperatures. In
particular, such multiple Einstein oscillator constellations are
capable of simulating (at least roughly) the generally observed
non-monotonic behaviours (occurrences of maxima [12,41,51–57])
of Cp(T)/T3 curves somewhere in the cryogenic region, provided
that the positions of the first Einstein peaks, e1, are chosen to be
located close to the first special points of the respective material-
specific PDOS spectra (e.g. e1EhnTA(L) or e1EE2(low), for binary
materials with zinc-blende or wurtzite structure [58], respec-
tively). At the same time it is obvious that, in view of the known
T-0 plateau behaviour of the Einstein functions (see below), such
exclusively discrete gP(e) model functions are a priori incapable of
providing finite magnitudes of the respective Cp(T)/T3 functions
[12,41,51–57] in the T-0 limit.

It is thus a matter of principle that physically adequate
descriptions of the whole Cp(T) curves, including their well
established T-0 limiting behaviour, C(T-0)pT3 [1–9,15], can
be given only on the basis of properly devised hybrid model
expressions for PDOS functions [14,59], gP(e). These are generally
consisting of combinations of certain continuous components for
low-energy tail regions [3,11,14,59] with conveniently chosen
sequences of discrete (Einstein) oscillators. The corresponding
analytical framework [59] is briefly sketched in Section 3. We
display in Section 4 a specialized four-oscillator-based version of
this hybrid model, which turns out to be appropriate for com-
prehensive numerical analyses of Cp(T) data sets available for
cubic II–VI materials (ZnS [57], ZnSe [33,60], ZnTe [40], CdTe
[29,30,33], HgSe [56], and HgTe [56]). Various characteristic facets
of non-Debye behaviour of the Cp(T) data sets under study are
discussed in Section 5.

2. Foundations of non-Debye vs. Debye model descriptions

Within the frame of the harmonic regime, the temperature
dependence of the isochoric heat capacity per mol, CVh(T), is
generally given by [46,59]

CVhðTÞ ¼ 3nARkPðTÞ ð1Þ

where R is gas constant, nA is the number of atoms per molecule
of the material in question (i.e. nA¼2 for binary materials), and
kP(T) is a material-specific heat capacity shape function. The latter
is generally given by an integral of the form [46,59]

kPðTÞ ¼

Z
degPðeÞ

e
2kBT

sinh
e

2kBT

� �� �2 Z
degPðeÞ

� 
ð2Þ

where gPðe� _oÞ represents the PDOS spectral function
[3,4,10,50,61]. (Note that the high temperature T-N limiting
value of Eq. (2) is unity, kP(T-N)¼1, in accordance with the
known Dulong–Petit limiting value of CVh(T-N)¼3nAR for the
respective isochoric heat capacity (1).)

It had been shown in Refs. [14,46] that the experimentally
measured, isobaric heat capacities can be represented in good
approximation on the basis of the heat capacity shape function
kP(T) (2) in combination with a certain Taylor series expansion for

the high temperature behaviour [46]

CpðTÞ ¼ 3nARkPðTÞ½1þkPðTÞðA1TþA2T2þ . . .Þ�: ð3Þ

The latter involves a set of empirical expansion coefficients,
A1,A2,y, which are accounting for the material-specific deviations
of Cp(T) from CVh(T). The respective differences, Cp(T)�CVh(T)40,
can generally be ascribed to combinations of lattice expansion
and anharmonicity effects, and their magnitudes use to increase
monotonically with temperature. Within the present study, how-
ever, we confine ourselves throughout to analyses of Cp(T) data
sets limited to temperatures below 400 K, where the corresponding
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Fig. 1. Partial fittings of Cp(T) data sets for ZnS (J [57]), ZnSe (W [60]), ZnTe (&

[40]), and CdTe (* [29], B [30]) on the basis of the exponential series representa-

tion (5) for kP(T) (———Cp Eq. (3); - - - - -CVh Eq. (1)). Shown are also limited

sections of the fictitious temperature dependences, CD(T), as resulting from

Debye’s kD(T) model function (4) with fixed (limiting) Debye temperatures,

YD-YDh(N) (see Table 1; – – – CVh-CD, due to Eqs. (1) and (4)). In the inset

are visualized the qualitative differences between the actual material-specific

dependences of non-Debye shape functions, kP (5), and the dependence of Debye’s

fictitious shape function, kD (4), on the ratio of limiting Debye vs. lattice

temperatures, YDh(N)/T.
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Fig. 2. Partial fittings of Cp(T) data sets for HgSe (J [56]) and HgTe (J [56]) on the

basis of the exponential series representation (5) for kP(T). (———Cp Eq. (3);

- - - - -CVh Eq. (1)). Shown are also the fictitious temperature dependences, CD(T),

as resulting from Debye’s kD(T) model function (4) with fixed (limiting) Debye

temperatures, YD-YDh(N) (see Table 1; – – – CVh-CD, due to Eqs. (1) and (4)).

In the inset are visualized the qualitative differences between the actual material-

specific dependences of non-Debye shape functions, kP (5), and the dependence of

Debye’s fictitious shape function, kD (4), on the ratio of limiting Debye vs. lattice

temperatures, YDh(N)/T.
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