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We investigate the possibility of a novel kind of optical pump probe spectroscopy where the two laser

pulses are focused on different areas of the sample. The response to the destruction of the

superconducting state in a large part of a mesoscopic ring is studied numerically. We use the time

dependent Ginzburg–Landau equations with periodic boundary conditions and external magnetic field.

We evaluate the relaxation rates of the superconducting order parameter as well as the voltage induced

by the charge imbalance. Computer simulations confirm that the perturbation of superconductivity on

one part of the ring induces a voltage which decelerates the superconducting electrons on the other part

of the ring. This deceleration results in the decrease of the superconducting current and the superfluid

density. The relaxation times are of the order of the picosecond, the induced voltage of few millivolts

and the variation of the superconducting gap of 10% which we believe to be suitable for time resolved

femtosecond optical spectroscopy.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the last two decades, many new experimental techniques have
been used to study the superconducting state. The main idea is of
course to investigate the new high temperature superconductors in
order to get a better understanding of the underlying mechanisms. As
such, the time resolved pump probe optical spectroscopy technique
has been used in various works with constructive results [1–4]. It is
indeed a powerful tool to describe ultrafast phenomena and in
particular to study the local superfluid dynamics. The underlying idea
is simple: the first laser pulse excites the sample and the second laser
pulse is used to measure the optical characteristics. The first pulse,
called ‘‘pump’’, excites electron–hole pairs which relax to states
around the Fermy energy. This relaxation is made via electron–
electron and electron–phonon scattering and results in the
multiplication of quasiparticles. The distribution of quasiparticles
might modify the optical characteristics of the material such as the
absorbance and the reflectivity. In particular in the case of
superconductors, the gap will induce a nonuniform distribution of
the quasiparticles which will accumulate near the gap. The second
laser pulse, called probe, will then detect the change of reflectivity. By
changing the delay between pump and probe, one can then obtain
the time dependency of the reflectivity which can be linked to the
intrinsic mechanisms after further analysis. Of course, the probe pulse
should have a low intensity not to alter the superconducting state.

With modern lasers delivering pulses in the femtosecond regime,
one can thus study the ultrafast response in superconductors and try

to get a better understanding of the dynamics linked to the
superconducting gap. However, one needs to take into account local
effects due to the intensity of the pump pulses and in particular, the
local heating and the change in the local carrier concentration. These
effects can be minimized and it is generally accepted that they
do not threaten the general validity of such measurements.
Nevertheless, we realize in the present work that it is possible to
completely get rid of these parasite effects by modifying the original
setup. The idea is to apply the pump and probe pulses at two
different places as seen in Fig. 1. Indeed, in the case of a ring, the
modification of the state in one half of the ring directly affects
the state on the other half of the ring due to the coherence of the
superconducting state. Such a setup should enable experimentalists
to apply pump pulses with high fluences without the usual
drawbacks. However, the geometry might be more complex to
realize and the dynamics involved at the probe will not necessarily
be large enough to be detected. This work therefore constitutes a
preliminary investigation to determine whether this setup would
be relevant. First, we discuss the theoretical model chosen to
describe the non-equilibrium situation that will be undoubtedly be
encountered in such experiments. This framework is the time
dependent Ginzburg–Landau (TDGL) equations. Then, we present
the results of numerical simulations and more specifically the
variation of the order parameter in the probe region. Last, we
interpret the data in terms of experimentally observable quantities.

2. The time dependent equations

As this work is not meant to give an extensive analysis, we are
not interested in the microscopic details. We therefore choose to
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use the TDGL equations derived from the phenomenological
Ginzburg–Landau theory. The validity of the TDGL equations is
generally accepted close to the critical temperature. Moreover,
the wide range of recent works tends to show that they provide a
qualitative picture for a larger variety of situations. We here use
the simplest version of the TDGL equations that takes into account
the presence of magnetic field and the possibility of charge
imbalance by introducing the vector potential A and the
electrostatic potential ~F as derived by Gor’kov and Kopnin [5]
in CGS units. We consider a superconducting ring of thickness d,
radius R and length L as represented in Fig. 1. For simplicity, we
consider d5x5leff , R� x and R5leff , where x is the coherence
length and leff is the Pearl [6] penetration depth. The first two
conditions allow us to treat the ring as one dimensional and the
last two conditions account for the mesoscopic size of the ring.
We apply a constant magnetic field H perpendicular to the ring.
The magnetic field determines the properties (superfluid density,
current, etc.) of the stable state.

We used the following dimensionless variables: vector
potential a¼ 2pxA=f0, time t¼ ðc2Þ=ð4pl2

effsnÞ~t ¼ ~t=ty, spatial
coordinates r¼ ~r=x, electrostatic potential F¼ ~Fsn8p2l2

eff=cf0

and order parameter c¼C
ffiffiffiffiffiffiffiffiffiffiffi
b=jaj

p
¼ rðr,tÞeiyðr,tÞ where g is a

positive constant accounting for the slow relaxation of the order
parameter. Cð~r,tÞ ¼ ~rei ~y is the Ginzburg Landau order parameter
which depends on the coordinate ~r and the time ~t . m and e are the
electron mass and charge, sn is the normal state resistivity of the
material, ‘ the reduced Planck constant and c the speed of light. a
and b are the coefficient appearing when deriving the free energy
(see [7] for example). The spacial derivatives have also been
modified by using r¼ ~r=x. In our case we will use x for the
dimensionless longitudinal coordinate.

The Pearl penetration depth leff ¼ l2=d has been introduced

instead of the London penetration depth l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2b=8pe2jaj

p
since

the thickness d is small. The coherence length is defined by

x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ 2=4mjaj

q
.

There are two characteristic time scales: tr ¼ g‘ =jaj corresponds
to the characteristic time of the evolution of the amplitude of the
order parameter, whereas ty accounts for the dynamics of the phase.
The ratio between those two characteristic times is the only
parameter left when using the dimensionless variables: u¼ tr=ty.

We neglect the corrections to the vector potential due to the
small dimensions of the ring and large Ginzburg–Landau para-
meter k¼ leff=x. Moreover, using the electroneutrality relation
divj¼ 0 as discussed in [5] we obtain
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As studied in [8], the stable state will depend on the applied
magnetic field. In the case when the initial state is unstable, the

order parameter will undergo one or more resistive phase slip
events. For the proposed setup, we believe that the presence of
magnetic field is important, in order to trigger interesting dynamics.
Indeed, we might need the presence of a superconducting current in
order to transmit the dynamics from one side to the other side of the
ring. We will study the influence of the induced current in the
forthcoming section.

The simplest way to modelize the laser pump pulse is to
consider that the order parameter is completely destroyed in the
pump region. We thus start from a solution where the super-
conducting state has been destroyed on the length l of the ring:

cðx,t¼ 0Þ ¼ 0 for 0oxo l : part 1

cðx,t¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2
p

for loxoL : part 2:

(
ð3Þ

According to [8] we can also prevent phase slip phenomena
from happening, by fixing the magnetic flux to one half of the flux
quantum.

3. Simulations of the relaxation process

Starting from the initial state (3), we study the recovery of the
ring to the stable state. when we destroy superconductivity, we
immediately create a voltage in the ring caused by the normal
region and therefore a charge imbalance and resistivity. We can
describe two mechanisms that can happen in the simple
framework of the phenomenological theory.

Mechanism A: In the superconducting part (part 2), the density
of superconducting electrons stays constant, but they are slowed
down by the voltage: we observe a decrease of the total current.
In this situation, we consider that we have a very low normal
current appearing in that region. In the part where the super-
conductivity has been destroyed (part 1), we observe a strong
normal current, going in the same direction as the superconduct-
ing current before the pump pulse. The Cooper pairs are broken
but the electrons continue to move in the same direction. This
normal current is progressively reduced as the superconducting
state is recovered: the normal electrons are accelerated by the
voltage and reduce the charge imbalance and the voltage.
However, if in part 1 the superconducting current gets too low
and if in part 2 the total current gets too high, we have an
inversion of the voltage and the relaxation will be similar to a
damped oscillator.

Fig. 1. Geometry of the proposed setup.

Fig. 2. Distribution of the order parameter amplitude r at different times, for

l/L¼70% and a¼0.6.
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