Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

journal homepage: www.elsevier.com/locate/jpcs

Synthesis, structure and electroluminescent properties of Schiff-base boron complex with anilido-imine ligand

Xiaoming Liu^{a,b,*}, Hong Xia^b, Xiao Fan^a, Qing Su^a, Wei Gao^a, Ying Mu^{a,*}

^a State Key Laboratory of Supramolecular Structure and Materials, School of Chemistry, Jilin University, Changchun 130012, PR China
^b State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun 130012, PR China

ARTICLE INFO

Article history: Received 18 December 2007 Received in revised form 3 September 2008 Accepted 5 September 2008

Keywords: A. Inorganic compound A. Semiconductor D. Crystal structure D. Luminescence

ABSTRACT

The Schiff-base ligand boron complex, LBF₂ [L = *ortho*-C₆H₄(NC₆H₃Me₂-2,6)(CH = NC₆H₃Me₂-2,6)], is synthesized and characterized. The crystal structural study reveals that central boron atom is four coordinate and adopts a distorted tetrahedral geometry in LBF₂. The photo/electroluminescent properties of the boron complex have been studied. The electroluminescent devices were fabricated by doping LBF₂ in polymer blends host of poly(vinylcarbazole) (PVK) and 2-*tert*-butylphenyl-5-biphenyl-1,3,4-oxadiazol (PBD) using simple solution spin-coating technique. The single-layer polymer organic light emitter devices exhibited blue-green emission with maximum current efficiency of 1.6 cd/A and maximum luminance of 840 cd/m^2 .

Crown Copyright © 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Luminescent coordination complexes have been one of the most active research areas due to their potential application in fields of optoelectronic devices and chemical sensors [1–4]. One of the most important considerations in organic light-emitting diodes (OLEDs) is the design and synthesis of high emission efficiency molecules through the modification of ligands and the selection of center metal [5,6]. Recently, organic boron compounds have attracted much attention due to their good luminescent properties, electron-transporting properties and low cost. For example, a large number of boron compounds based on 8-hydroxyquinoline [7], pyridyl-7-azaindole [8], pyridyl-phenol [9], pyridyl-pyrrolide [10] have been investigated in recent years. Particularly, Wang and co-workers have systematically reported the synthesis, structures and photoluminescent (PL) and electroluminescent (EL) properties of boron-containing compounds. Nevertheless, reports on the Schiff-base ligands boron complexes as emission materials in OLEDs are still scarce. We have recently focused our attention on the synthesis of luminescent complexes with chelating anilido-imine Schiff-base ligands [11-13], where the emission color of complexes in solution can be tuned by the ortho-substituents on the rotatable aryl rings of the ligands. As we know, the compounds containing rotatable aryl rings, such as silole, have high luminescent efficiency in the solid state [14]. As a continuation of our studies on the luminescent boron complexes, herein we report the structure and EL characterizations of a boron complex with larger volume Schiff-base ligand as emitter in polymer OLEDs by simple spin-coating technology from solution.

2. Experimental details

2.1. Material

 $BF_3 \cdot Et_2O$, *n*BuLi, poly(vinylcarbazole) (PVK), 2-*tert*-butylphenyl-5-biphenyl-1,3,4-oxadiazol (PBD) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) were purchased from Aldrich and used as received. *Ortho*-C₆H₄(NHC₆H₃Me₂-2,6)(CH = NC₆H₃Me₂-2,6) (L) was synthesized according to the literature [11].

2.2. Characterizations

The infrared spectrum was recorded on a GX Fourier transform infrared spectrometer (Perkin-Elmer company). The nuclear magnetic resonance (NMR) spectra were measured using a Varian Mercury-300 NMR spectrometer. The elemental analysis was performed on a Perkin-Elmer 2400 analyzer. The diffraction data of LBF₂ were collected at 293 K on Bruker SMART APEX diffractometer with a CCD area detector, using graphite-monochromated

^{*} Corresponding authors at: Structure and Materials, School of Chemistry, Jilin University, State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Changchun 130012, PR China. Tel.: +86 431 85168497; fax: +86 431 85193421.

E-mail addresses: xmliu@email.ilu.edu.cn (X. Liu), vmu@ilu.edu.cn (Y. Mu).

Mo-K_α radiation (λ = 0.71073 Å). The structure was solved by direct methods and refined by full-matrix least squares on F^2 . All non-hydrogen atoms were refined anisotropically and the hydrogen atoms were included in idealized position. All calculations were performed using the SHELXTL [15] crystallographic software packages. CCDC-668572 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/ deposit. UV-vis absorption spectra were recorded on UV-3100 spectrophotometer. Fluorescence measurements were carried out with RF-5301PC.

Indium-tin-oxide (ITO)-coated glass with a sheet resistance of $< 50 \Omega \square^{-1}$ was used as substrate. The substrate was prepatterned by photolithography to give an effective device size of 4 mm². Pre-treatment of ITO includes a routine chemical cleaning using detergent and alcohol in sequence, followed by oxygen plasma cleaning. Active layers were spin-coated from chloroform solutions containing 20 mg/ml of x% by weight LBF₂ in polymer on ITO substrates to give film thickness of 80–100 nm. The hole block layer BCP was deposited by thermo-evaporation. The cathode Ba/Al was deposited (50 nm) by thermo-evaporation and followed by a thick Al capping layer. The electroluminescence and luminance were recorded on a PR650 spectrometer. Current voltage and light intensity measurements were made at room temperature and ambient conditions.

2.3. Synthesis of LBF₂

*n*BuLi (0.52 mmol) was added dropwise via syringe over 10 min to a stirred solution of ortho- $C_6H_4(NHC_6H_3Me_2-2,6)(CH =$ NC₆H₃Me₂-2,6) (0.17 g, 0.52 mmol) in 15 ml of toluene at -78 °C. The mixture was stirred at -78 °C for additional 10 min and allowed to be warmed to the room temperature. After 4 h at room temperature, the resulting mixture was added dropwise to a toluene solution of BF₃ · Et₂O (0.64 ml, 0.52 mmol) at -78 °C with stirring. The mixture was allowed to warm to the room temperature and was stirred overnight. The mixture was filtered and the filtrate was reduced to approximately 5 ml in volume and kept at -10 °C overnight to let the product crystallize. The product was obtained as yellow-green crystals (0.18 g, 78%). Anal. Calcd for C23H23N2BF2 (376.25): C 73.42, H 6.16, N 7.45. Found: C 73.56, H 6.31, N 7.59. ¹H NMR (CDCl₃, 293 K): δ 2.33 (s, 6H, CH₃), 2.45 (s, 6H, CH₃), 6.35 (d, 1H, Ph-H), 6.80 (t, 1H, Ph-H), 7.28-7.43 (m, 7H, Ph-*H*), 7.47 (t, 1H, Ph-*H*), 8.22 (s, 1H, CH = NAr) ppm. ¹³C {¹H} NMR (CDCl₃, 293 K): δ 18.4 (CH₃), 112.0, 114.6, 116.0, 126.9, 128.0, 128.6, 128.7, 133.1, 134.2, 137.3, 138.1, 138.3, 141.9, 151.6, 163.8 (CH = NAr) ppm. IR (KBr, cm⁻¹) v 2924m, 2854w, 1623s, 1554s, 1480m, 1455s, 1382m, 1344s, 1231w, 1190s, 1058s, 1095w, 949w, 763s, 623w, 548w, 521w, 467w.

3. Results and discussions

3.1. Complex synthesis

The boron difluoride complex LBF₂ was synthesized in good yields (78%) by the reaction of BF₃ · OEt₂ with the lithium salt of its ligand that was generated in situ by treating the free ligand with *n*BuLi in toluene at -78 °C. The complex LBF₂ was characterized by elemental analyses, ¹H and ¹³C NMR spectroscopy, IR-spectroscopy, and satisfactory analytic results were obtained on the complex. In the ¹H NMR spectrum of LBF₂, the resonance for the imino CH proton is at $\delta = 8.21$ ppm. While the resonance ($\delta = 163.8$ ppm) for the imino C-atom in the ¹³C NMR spectrum shifts to higher field in comparison with the corresponding signals of the free ligand and the dichloride aluminum complex [13].

The LBF_2 was very soluble in dichloromethane, diethyl ether, toluene and THF, and moderately soluble in saturated hydrocarbons.

3.2. Crystal structure

The molecular structure of the complex LBF₂ was determined by X-ray crystallographic analysis. Crystals of the LBF₂ suitable for X-ray crystal structure determination were grown from *n*-hexane at room temperature. The ORTEP drawing of molecular structure of LBF₂ is shown in Fig. 1. Cell parameters and refinement details for LBF₂ are listed in Table 1. In LBF₂, the boron center adopts a distorted tetrahedral geometry. The boron center atom is bidentate chelated by the Schiff-base ligand via two nitrogen atoms, and the other two coordination sites are taken up by two fluoride ligands. The N–B–N bite angle in LBF₂ (107.9(2) $^{\circ}$) is larger than this in the aluminum complex with same ligand $(93.86 (6)^{\circ})$ [12], which is presumably due to the smaller atom radii of boron. In the complex, the six-membered chelating ring is nearly planar with the boron atom lying 0.1292 Å out of the plane. The imino C=N bond in this complex retains its double bond character, being 1.297(2) Å. The average B-F bond lengths of 1.377(4) Å in the boron complex is slightly smaller than 1.403(2)Å for 2,2-difluoro-1,3,4,6-tetramethyl-3-aza-1-azonia-2-bora-4,6-cyclohexadiene [16]. The F–B–F bond angle of the complex is $108.5(3)^\circ$, which is close to $107.8(2)^{\circ}$ for previously reported *p*-Tol₂nacnacBF₂ [17]. The dihedral angle between the six-membered chelating ring and the aromatic ring at the amido nitrogen is 84.0° , while the dihedral angle between the six-membered chelating ring and the aromatic ring at the imine nitrogen is 76.3°.

3.3. Photoluminescent and elecroluminescent properties

C2

C21

C17

C16

C20

C18

Fig. 2 shows the chemical structures of LBF₂, BCP and polymer hosts used in this study. The UV–vis absorption and fluorescence spectra of LBF₂ are shown in Fig. 3. The absorption and emission peaks of LBF₂ in chloroform are at 425 and 493 nm, respectively. However, LBF₂ in the solid state emits bright fluorescence with emission maximum of 508 nm, which is red-shifted in comparison with its emission maximum in solution. The red shift of the emission wavelength from solution to solid state is likely caused by π – π stacking of aromatic rings in the molecule in the solid state. The quantum yield of LBF₂ has been determined in chloroform [18], and the high PL efficiency (0.51) should also be

C5

C7

N2

C6

́В1

C14

C9

C8

C15

C10

C11

C12

Download English Version:

https://daneshyari.com/en/article/1516916

Download Persian Version:

https://daneshyari.com/article/1516916

Daneshyari.com