

Contents lists available at ScienceDirect

Journal of Physics and Chemistry of Solids

Crystal growth and the electronic structure of Tl₃PbCl₅

V.L. Bekenev^a, O.Yu. Khyzhun^{a,*}, A.K. Sinelnichenko^a, V.V. Atuchin^b, O.V. Parasyuk^c, O.M. Yurchenko^c, Yu. Bezsmolnyy^d, A.V. Kityk^e, J. Szkutnik^e, S. Całus^e

^a Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, Kyiv 03142, Ukraine

^b Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia

^c Department of General and Inorganic Chemistry, Volyn National University, Lutsk 43025, Ukraine

^d SMI Lab Ltd, Primorska Street 50/52, Svitlovodsk 27504, Ukraine

^e Faculty of Electrical Engineering, Częstochowa University of Technology, Al. Armii Krajowej 17, 42-200 Częstochowa, Poland

ARTICLE INFO

Article history: Received 27 December 2010 Received in revised form 16 February 2011 Accepted 23 February 2011 Available online 1 March 2011

Keywords: A. Semiconductors B. Crystal growth C. Ab initio calculations D. Electronic structure

ABSTRACT

Total and partial densities of states of constituent atoms of two tetragonal phases of Tl_3PbCl_5 (space groups P4₁2₁2 and P4₁) have been calculated using the full potential linearized augmented plane wave (FP-LAPW) method and Korringa–Kohn–Rostoker method within coherent potential approximation (KKR-CPA). The results obtained reveal the similarity of occupations of the valence band and the conduction band in the both tetragonal phases of Tl_3PbCl_5 . The FP-LAPW and KKR-CPA data indicate that the valence band of Tl_3PbCl_5 is dominated by contributions of the Cl 3p-like states, which contribute mainly to the top and the central portion of the valence band with also significant contributions throughout the whole valence-band region. Further, the bottom of the valence band of Tl_3PbCl_5 is composed mainly of the Tl 6s-like states, while the bottom of the conduction band is dominated by contributions of the empty Pb 6p-like states. The KKR-CPA results allow to assume that the width of the valence band increases somewhat while band gap, E_g , decreases when changing the crystal structure from P4₁2₁2 to P4₁. The X-ray photoelectron core-level and valence-band spectra for pristine and Ar⁺-ion-irradiated surfaces of a Tl_3PbCl_5 monocrystal grown by the Bridgman–Stockbarger method have been measured.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years a lot of attention has been paid to technologies of development and investigation of non-linear optical crystals for middle infrared (3-12 µm) laser sources for applications in free space communications, remote sensing, medical diagnostics, etc. [1]. Such applications require high output power/energy, stable and compact devices as well as no moisture-sensitive materials at room-temperature operations [1]. In the past, chalcogenides and rare-earth chlorides, partly Dy³⁺:CaGa₂S₄ lasing at 2.43 and 4.31 μ m [2] and Pr³⁺:LaCl₃ lasing at 5.2 and 7.2 µm [3,4], were considered as promising laser crystalline hosts for middle infrared (mid-IR) applications. Nevertheless, these crystals are found to be strongly hygroscopic; this disadvantage prevents their development as efficient laser sources. The requirement of non-hygroscopic materials has generated a number of investigations regarding growth of several no moisture-sensitive complex halide-bearing crystals to find alternative solutions. Among promising halides for mid-IR laser applications, KPb₂Cl₅, KPb₂Br₅, RbPb₂Br₅, CsCdBr₃, Tl₄Hgl₆, Tl₄PbI₆, Tl₃PbBr₅, Tl₃PbI₅, Tl₃PbCl₅, etc. have been reported [1,4–11]. Tl₃PbCl₅ halide is of particular interest. Tl₃PbCl₅ crystallizes [12] in the TlCl–PbCl₂ system, which melts congruently at 395 °C [5]. Tl₃PbCl₅ single crystals are transparent in the range of 0.5–20 µm, non-hygroscopic and uniaxial [11]. An elliptically deformed circular crosssection is characteristic of Tl₃PbCl₅ single crystals that can be easily grown from the liquid state by the Bridgman–Stockbarger method [11].

Two phases, both possessing a tetragonal symmetry (Fig. 1), have been reported for Tl_3PbCl_5 . Keller [13] was first to solve a crystalline symmetry and to determine unit cell parameters of Tl_3PbCl_5 on single crystals grown from liquid state; however, his space group for this compound (P4₁) was not confirmed by other authors. Partly, Skarstad et al. [14] have reported that grown by the Bridgman method Tl_3PbCl_5 single crystals crystallize in a tetragonal symmetry with four formula units per unit cell, but in the non-centrosymmetric space group P4₁2₁2 (no. 92). Owing to this space group, both Tl^+ and Pb^{2+} cations occupy the equivalent 8b sites (Table 1). Therefore, the formula for this compound can be appropriately written as $(Tl_{0.75}Pb_{0.25})_4Cl_5$ [14]. The findings by Skarstad et al. [14] have been confirmed comparatively recently by detailed X-ray single-crystal diffraction

^{*} Corresponding author. Tel.: +38 044 424 33 64; fax: +38 044 424 21 31. *E-mail addresses:* khyzhun@mail.ru, khyzhun@ipms.kiev.ua (O.Yu. Khyzhun).

^{0022-3697/\$ -} see front matter \circledcirc 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.jpcs.2011.02.016

measurements [11] on Tl₃PbCl₅ grown by the Bridgman–Stockbarger method (see Table 1).

In 1983, based on differential thermal analysis, Keller [5] reported for Tl_3PbCl_5 the existence of a first-order phase transition

Fig. 1. Crystal structure of (a) $HT-Tl_3PbCl_5$ (space group P4₁; no. 76; Cl—large green balls, Tl—middle brown balls and Pb—small blue balls) and (b) $RT-Tl_3PbCl_5$ (space group P4₁2₁2; no. 92; Cl—large green balls, Tl and Pb—small blue balls) phases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

occurring at 155 °C. The above first-order transition was suggested to be due to the ordering of Tl⁺ and Pb²⁺ cations leaving unchanged positions of Cl⁻ anions [5]. Lattice parameters and atomic positions of this ordered Tl₃PbCl₅ phase crystallizing in a tetragonal symmetry with four formula units per unit cell (space group P4₁; no. 76) are listed in Table 2. Ferrier et al. [11] confirmed a phase transition in Tl₃PbCl₅, however occurring at 171 °C (instead of 155 °C reported by Keller [5]). Nevertheless, Ferrier et al. [11] were unable to interpret this transition occurring in Tl₃PbCl₅.

To the best of our knowledge, the electronic structure of Tl₃PbCl₅ was not studied both from a theoretical and an experimental point of view. Therefore, in the present paper we aim at a comprehensive study of the energy distribution of electronic states of different symmetries of constituent atoms of Tl₃PbCl₅. With this purpose, we employ possibilities of the full potential linearized augmented plane wave (FP-LAPW) method as incorporated in the WIEN97 code [15] in order to study total density of states (DOS) and partial densities of states of the ordered Tl₃PbCl₅ phase crystallizing in the space group $P4_1$ (no. 76). For clarity, we shall refer to this phase as high-temperature (HT) Tl₃PbCl₅. Additionally, the electronic structure of the Tl₃PbCl₅ phase with statistical occupation of the equivalent 8b sites by Tl⁺ and Pb²⁺ cations (space group P4₁2₁2; no. 92; we shall refer to this phase as room-temperature (RT) Tl₃PbCl₅) was calculated employing the possibility of the Korringa-Kohn-Rostoker method within coherent potential approximation (KKR-CPA) [16]. The latter method was used also to calculate the electronic structure of the HT-Tl₃PbCl₅ phase. Further, we have used possibilities of the X-ray photoelectron spectroscopy (XPS) method to study the XPS valence-band spectrum as well as to measure the binding energies (BEs) of core-level electrons of constituent atoms of RT-Tl₃PbCl₅. The influence of 1.5 keV Ar⁺ bombardment on the XPS valence-band and core-level spectra of RT-Tl₃PbCl₅ surface is also within the scope of the present study. For experimental measurements, we have used a Tl₃PbCl₅ crystal grown by the Bridgman-Stockbarger method.

Table 2

Crystallography data for atomic coordinates of the $HT-TI_3PbCI_5$ phase (space group P4₁; no. 76) as determined by Keller [13].

Atom	Wyckoff position	<i>a</i> =8.448 Å and <i>c</i> =14.912 Å (ICSD #1262)				
	I ·····	x	у	Z		
Tl1	4a	0.9942	0.8074	0.8030		
T12	4a	0.1212	0.3198	0.8786		
T13	4a	0.6216	0.1804	0.8211		
Pb	4a	0.4940	0.6936	0.8963		
Cl1	4a	0.3370	0.1570	0.2310		
C12	4a	0.6870	0.0080	0.3540		
C13	4a	0.0260	0.8390	0.2100		
Cl4	4a	0.5280	0.6500	0.5080		
Cl5	4a	0.4900	0.8060	0.1080		

Table 1

Crystallography data for atomic coordinates of the RT-Tl₃PbCl₅ phase (space group P4₁2₁2; no. 92) as determined in Refs. [11,14].

Atom	Wyckoff position	a=8.450 Å and	a=8.450 Å and c=14.927 Å (Ref. [14]) (ICSD #8151)			<i>a</i> =8.44 Å and <i>c</i> =14.92 Å (Ref. [11])		
		x	у	Z	x	у	Z	
Tl/Pb1	8b	0.3067	0.0066	0.07832	0.30665	-0.00683	0.671618	
Tl/Pb2	8b	0.8193	0.8787	0.1538	0.68069	-0.37899	0.65376	
Cl1	4a	0.3420	0.3420	0.0000	0.1601	0.1601	0.5	
Cl2	8b	0.3480	0.9740	0.4755	0.0132	-0.1880	0.62292	
Cl3	8b	0.1880	0.0120	0.874	0.4741	-0.15220	0.52469	

Download English Version:

https://daneshyari.com/en/article/1517025

Download Persian Version:

https://daneshyari.com/article/1517025

Daneshyari.com