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a b s t r a c t

An integral fitting method has been developed to determine the phase transformation mechanism and

to extract the kinetic parameters during the crystallization of amorphous alloys. The proper kinetic

function of the phase transformation was firstly deduced. Theoretical differential scanning calorimetry

curves were then calculated. All the kinetic parameters can be extracted by fitting the calculated

differential scanning calorimetry curves to experimental data. We applied the integral fitting method to

analyze the isochronal crystallization of the Ti50Cu42Ni8 amorphous alloy. Results indicate that a

transformation process considering impingement is more suitable to describe the crystallization

kinetics of this alloy than using the traditional Johnson–Mehl–Avrami model. Mean values of the

obtained kinetic parameters show strong heating rate dependence.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Amorphous alloys have received wide and intensive attention in
the past few decades due to their unique structure, attractive
physical or chemical properties and practical applications in various
engineering fields [1–5]. However, amorphous alloys may lose or
sometimes improve their interesting properties after they are fully or
partly crystallized upon thermal annealing. Thus, it is important and
necessary to understand their crystallization kinetics and mechan-
ism. Isochronal differential scanning calorimetry (DSC) scans are
mostly often used to study the crystallization of amorphous alloys
[6–8]. The information of crystallization sequence, temperature,
enthalpy, and even the kinetic parameters (for example, the
activation energy of a particular process) can be readily obtained
from quick scans [7,8].

Using DSC to investigate the crystallization kinetics of different
amorphous alloys has been widely discussed [9–12]. Various
theoretical models have been developed for the kinetics analysis
based on DSC data. Important kinetic parameters can be extracted
by comparing the experimental DSC curves to the theoretical ones
calculated using an appropriate kinetic model [13,14].

In this work, an integral fitting method was developed to
determine the transformation function, f(a), in the crystallization
process of amorphous alloys. By direct fitting the theoretical DSC
curves to experimental data obtained at various heating rates,
kinetic parameters such as the activation energy, kinetic exponent

and frequency factor could be obtained. Applying this method to
analyze the isochronal crystallization kinetics of the Ti50Cu42Ni8

amorphous alloy, we found that the kinetic model considered
impingement was more suitable to describe the transformation
processes and provided more accurate kinetic parameters than
classical Johnson–Mehl–Avrami (JMA) equation.

2. Theoretical analysis

From the kinetic analysis of a phase transformation, we can
determine the important kinetic parameters and the analytical
form of the transformation function f(a). The transformed volume
fraction, a, according to the JMA model [15–17], can usually be
expressed in the following form:

aðtÞ ¼ 1� expf�½KðTÞt�ng; ð1Þ

where n is the kinetic exponent, and the constant K(T) is usually
assumed to have an Arrhenian temperature dependence:

KðTÞ ¼ K0 exp �
Ea

RT

� �
; ð2Þ

where K0 is the pre-exponential (frequency) factor, Ea is the activation
energy, and R is the ideal gas constant. In most solid-state reactions,
the phase transformation rate (da/dt), which is assumed independent
on the thermal history under non-isothermal conditions, can be
expressed as the product of two separable functions [18]:

da
dt
¼ KðTÞf ðaÞ: ð3Þ
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As an analytical expression describing the kinetic model of the
transformation process, the function f(a) involves the mechanism
of transformation. According to the JMA model, f(a) can be
expressed as

f ðaÞ ¼ nð1� aÞ½�lnð1� aÞ�1�1=n: ð4Þ

2.1. Deducing the theoretical DSC heat flow function

The specific heat flow (f in W/g) measured from DSC scans can
be expressed by the following kinetic equation [18]:

f¼DHC
da
dt
; ð5Þ

where DHC is the crystallization enthalpy. Combining Eqs. (2),
(3) and (5), the kinetic equation for a theoretical DSC curve can be
written as

f¼DHCK0 exp
�Ea

RT

� �
f ðaÞ: ð6Þ

Thus, the theoretical DSC heat flow function for the JMA
kinetics can be written as

f¼DHCK0expð
�Ea

RT
Þnð1� aÞ½�lnð1� aÞ�1�1=n: ð7Þ

Notwithstanding the apparent wide range of applicability,
many cases of deviations from the JMA kinetics have been
reported [10,18–22]. These problems could be solved by taking
the anisotropic growth into account [18–22]. After considering the
impingement effect, we have [22]

da
daext

¼ ð1� aÞl; ð8Þ

where aext (defined as aext=[K(T)t]n) is the extended crystal-
lization fraction [23], and l (41) is the impingement factor.
When l=1, Eq. (8) can be converted to the JMA equation. When
l41, a can be obtained by integrating Eq. (8)[10]:

a¼ 1� f1þðl� 1Þ½K0expð�Ea=RTÞt�ng
�ð1=l�1Þ

: ð9Þ

Calculating the derivative of Eq. (9) with respect to t, we have

da
dt
¼ K0 expð�Ea=RTÞnð1� aÞl ð1� aÞ

�ðl�1Þ
� 1

l� 1

" #1�1=n

: ð10Þ

The kinetic model of this transformation can then be expressed
by the following equation [24]:

f ðaÞ ¼ nð1� aÞl ð1� aÞ
�ðl�1Þ

� 1

l� 1

" #1�1=n

: ð11Þ

Substituting Eq. (11) into Eq. (6), we can finally express the
theoretical DSC heat flow function for the transformation process
considering the impingement effect as

f¼DHCK0 expð�Ea=RTÞnð1� aÞl ð1� aÞ
�ðl�1Þ

� 1

l� 1

" #1�1=n

: ð12Þ

Eqs. (7) and (12) are suitable for both isothermal and non-
isothermal transformation processes. Theoretical DSC curves can
be calculated using these two equations with given kinetic
parameters. Adjusting the values of trial kinetic parameters until
the theoretical DSC curves fit well to the experimental data, we
can finally get the exact values of kinetic parameters (Ea, n, K0

and l).

2.2. Determining the kinetic function

Before calculating the theoretical DSC curves, we should first
determine the proper kinetic function for a particular transforma-

tion process. Eq. (7) is valid only when the JMA equation is
applicable. The JMA equation was originally developed to analyze
isothermal DSC data. Henderson [14] has shown that the validity
of the JMA equation can be extended to non-isothermal conditions
if the entire nucleation process takes place during the early stage
of the transformation and becomes negligible afterwards. A
simple but reliable method based on a function, z(a), has been
proposed to test the applicability of the JMA equation [18]. Under
continuous heating conditions this function is given by

zðaÞ ¼fT2: ð13Þ

This function reaches its maximum when a equals to aM
P .

Values of aM
P can be used to determine the proper kinetic model

and aM
P =0.632 is usually regarded as a characteristic ‘fingerprint’

of the JMA model [18]. Substituting Eqs. (7) and (12) into Eq. (13),
respectively, we can express z(a) as

zðaÞ ¼DHCK0 exp
�Ea

RT

� �
nð1� aÞ½�lnð1� aÞ�1�1=nT2; ð14Þ

for the JMA kinetics, and

zðaÞ ¼DHCK0 expð�Ea=RTÞnð1� aÞl ð1� aÞ
�ðl�1Þ

� 1

l� 1

" #1�1=n

T2;

ð15Þ

for the transformation kinetics considering the impingement
effect.

Fig. 1 shows the normalized z(a) calculated from Eqs. (14) and
(15) using trial kinetic parameters as a function of a. The curve
corresponding to l=1 in Fig. 1(a) was obtained from Eq. (14),
while other curves were obtained from Eq. (15). It is obvious that
the JMA equation holds only when aM

P =0.632 (position marked by
the vertical dash line in figures). aM

P decreases from its maximum
value of 0.632 quickly with increasing l (shown in Fig. 1(a)). When
l is fixed (l=4 in Fig. 1(b)), aM

P increases with increasing n, but is
always less than 0.632 (aM

P is only about 0.5 even when n=10). So,
according to the above discussions, the impingement effect should
be considered for kinetics analysis when aM

P is less than 0.632.

2.3. Procedures of integral fitting method and extraction of kinetic

parameters

After the appropriate kinetic function is determined, all the
kinetic parameters can be extracted by using an integral fitting
method. The steps to fit the integral transformation process to the
theoretical kinetic function are listed below:

(a) Initial values of the kinetic parameters, Ea, n, K0 and l,
are firstly chosen by a trial-and-error method. For example,
for the crystallization (three-dimensional) of amorphous
alloys, reasonable values of Ea are in the range from 100 to
500 kJ/mol, n changes from 1 to 4. (In some special cases, Ea

could be a little higher when the crystallized phase is very
difficult to form and n could exceed 4 when the nucleation
rate is very high). Since the kinetic parameter Ea can usually
be obtained with high accuracy by the iso-conversion method
[25], the initial value of Ea can be calculated first and adjusted
in a narrow range during the next steps.

(b) A Genetic Algorithm [26] method is recommended to perform
rigorous fitting process. The initial settings such as the
population size and stopping criteria are needed before
fitting. Fitting is performed by minimizing the sum of the
squares of the residuals, employing a simplex fitting proce-
dure. Values for the kinetic parameters are then obtained.

(c) Change the initially selected values and repeat the above
fitting process. If the fitting results keep same (or vary within
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