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We calculate the optical conductivity of small polarons in the Holstein and Holstein-t-] models, by
applying the dynamical mean field theory. We show that the antiferromagnetic correlations tend to
increase the region of the parameters where polaronic signatures are found in the optical spectra, and
shift the polaronic absorption band to higher frequencies compared to the case of purely lattice

polarons. On the other hand, the electron-lattice interaction is essential in order to have polaronic
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features in the optical absorption.
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1. Introduction

In systems with strong electron-phonon (e-ph) interactions,
the motion of the carriers is significantly reduced by the
formation of polarons. A polaron is a state in which the phonon
and electron degrees of freedom are tightly entangled: the
presence of an electron is associated to a finite lattice distortion,
which in turn binds the electron, leading to the so-called self-
trapping effect. Magnetic interactions, such as those acting on an
hole moving in antiferromagnetic (AF) background, also tend to
localize the charges. In this case the localizing effect is due to the
energy cost that the moving hole has to pay as it modifies the local
magnetic environment. In transition metal oxides, these two
mechanisms often coexist, leading to an interesting interplay
which will be the subject of the present study.

Typical signatures of polarons are seen in photoemission
spectra [1]—where the lattice degrees of freedom can show up
as characteristic multi-peaked structures—and transport measur-
ements—where a thermally activated behavior is often observed
at room temperature [2,3]. Optical absorption measurements [4,5]
may also detect a polaronic band at a frequency related to the
polaron binding energy [6] as well as polaronic interband
transitions in the range of the phonon frequencies [7]. Another
less classical indication of polaronic formation comes from the
analysis of lattice displacements associated to the excess charge as
obtained by the distribution of distances between atoms [8].

* Corresponding author. Tel.: +39 0862 433080; fax: +39 0862 433033.
E-mail address: Sergio.Ciuchi@aquila.infn.it (S. Ciuchi).

0022-3697/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jpcs.2008.03.023

In studies of polaron formation, the difficulty consists in
describing the dressing of the moving electron by a cloud of
phonons, in a complex state that can coherently move as a
quasiparticle [9]. Here we use dynamical mean field theory
(DMFT), a non-perturbative technique originally developed as the
exact solution of a interacting electron problem on an infinite
dimensional lattice [10,11]. In its original formulation, DMFT
solves a general tight-binding problem in the presence of local
interactions by mapping it onto an effective local model. The latter
is embedded in a quantum medium, whose properties are
determined self-consistently.

The results for the optical absorption of small lattice polarons
are presented in Section 2. These are generalized in Section 3 to
include an additional coupling with the magnetic background. The
main findings are briefly summarized in Section 4.

2. Optical conductivity for Holstein polarons

As a paradigmatic model for the study of small lattice polarons
we choose the Holstein molecular crystal model whose Hamilto-
nian reads

H= wOZa;’a,- —ch;’c,-(a,-+ +a;) — tZ(cffcj +H.c), (1)
i i,o Ly

where tight-binding electrons (c;, c;.") with hopping amplitude ¢t are
coupled locally to Einstein bosons (ai,a,T) with energy wo. We
choose as dimensionless parameters of the model the e-ph
coupling constant 4 = g2 /woD, where D is the half-bandwidth of
our lattice, and the adiabatic ratio y = wg/D.
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The single electron case can be solved semi-analytically within
DMFT at any temperature [9]. The solution is given in terms of the
local Green function G(w) [or equivalently a local self-energy >(w)]
in the form of a continued fraction expansion [9,12]. The self-
energy enters in the single particle spectral function
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Its integral over the band dispersion ¢ equals the local Green'’s
function G(w), which provides the self-consistency equation that
closes the DMFT loop.

The conductivity at finite frequency is related to the current-
current correlation function through the appropriate Kubo
formula. In DMFT, due to the absence of vertex corrections
[13,14], the optical conductivity per particle can be expressed in
the low density limit as

a(w) = %(1 — e~y / de N(s)d)(a)/ dve ™ p%¥(e, v)p(e, v + ), 3)

where f=1/T is the inverse temperature, and the constant
¢ =e?a?/hv, that we shall omit in the following, carries the
appropriate dimensions of conductivity (a being the Ilattice
spacing, v the volume of the unit cell). In Eq. (3)
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defines the “weighted spectral function”, which carries informa-
tion on thermally excited states.

The density of states N(¢) of the unperturbed lattice is assumed
semi-elliptical of half-bandwidth D, namely N(¢) = (2/zD?)
VD? —¢2. In Eq. (3), ¢(e) =(D* —¢*)/3 is the current vertex
function [15-17]. With this choice for N(¢) and ¢(¢), the e-integral
can be performed analytically, leaving only one integral to be
computed numerically [15].

Let us focus on the adiabatic regime y<1, where the polaron
crossover is very sharp (it becomes a true localization transition at
y = 0) [18]. A key parameter which controls the optical properties
in this regime is the variance of the phonon quantum fluctuations
s = ADwg cothwo /2T [19]. In the strong coupling regime, the
photoexcitation of the electron is much faster than the lattice
dynamics, which is virtually frozen during the absorption process.
Since the lattice energy cannot be relaxed, the dominant optical
transition corresponds to the difference in electronic energy
between the initial and final states (Franck-Condon principle)
which, in the Holstein model, equals twice the ground state
energy Ep = /D. The shape of the optical absorption will depend
on the ratio between the width of the non-interacting band ~D,
and the variance s of the phonon field.

When s>D, ie. when the phonon-induced broadening of
electronic levels is much larger than the electronic dispersion, the
absorption by localized polarons takes the form of a skewed
Gaussian peak centered at wmex = 2Ep [20,21]
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In the opposite limit s<D, the lineshape is dominated by the
electronic dispersion. The absorption is due to transitions from a
polaronic state whose electronic energy is ~ —2Ep to the
continuum of free-electron states [22,23]. From Eq. (3) we get in
this limit [15]
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We see that in this case the absorption of photons occurs as a
threshold phenomenon above 2Ep —D and vanishes above
2Ep + D. The lineshape strongly differs from Eq. (5) and is rather

¢(w — 2Ep)N(w — 2Ep). (6)
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similar to the weak coupling case (the absorption vanishing as a
power law at the edges). For the above semi-elliptical DOS, which
can be taken as representative of a three-dimensional lattice, we
find that the absorption maximum wpa = 2Ep — D? /2Ep is shifted
to lower frequencies compared to the usual estimate 2Ep. This
softening is entirely due to finite bandwidth effects. Note that
Eq. (6) is valid at all temperatures below the polaron dissociation
temperature T~Ep. In particular, contrary to Eq. (5), nothing
happens here at temperatures T~wq/2, provided that the condi-
tion s<D is not violated (in other words, a temperature
independent sub-threshold absorption is not necessarily in
contradiction with polaron formation [24]).

Fig. 1 shows the DMFT results at y = 0.1 and 2 = 1.1. This value
of the coupling strength lies in the polaronic regime, in a region
where the electronic dispersion and the phonon-induced broad-
ening are comparable (s/D = 0.33), so that none of Eqs. (5) and (6)
is expected to hold. DMFT results shows a qualitative difference
between low (w<2Ep) and high (w>2Ep) frequency regions:
characteristic phonon resonances are evident at low frequencies,
that merge in a broad continuum at higher frequencies [9,15].
This behavior, obtained in DMFT, cannot be reproduced by the
usual approximate formulas, which either predict a smooth
continuum or a multi-peaked spectrum depending on their range
of validity [21].

Concerning the overall shape of the optical conductivity, the
DMFT spectrum at s/D = 0.33 is intermediate between the two
asymptotic formulas above. It is softer, broader and more asym-
metric than Eq. (5) (full line). In fact, the position of the absorption
maximum agrees better with Eq. (6) (dashed line). However, the
peak height is much reduced compared to Eq. (6) and the
absorption edge is completely washed out by phonon fluctuations.

Our results show that detectable deviations from the com-
monly used Eq. (5) arise as soon as the non-interacting bandwidth
is larger than the broadening s, a condition that is often realized
in real systems. For example, taking typical values wqg =~
0.01-0.05eV and E, ~0.1-0.5eV yields a zero temperature
broadening s ~ 0.03—0.16 eV, in which case electron bandwidths
of few tenths of meV are already sufficient to invalidate the
standard Gaussian lineshape equation (5).

3. Optical conductivity for Holstein-t-J polarons

We consider the case of a single hole in an AF background,
interacting with local Holstein phonons. Using the linear spin-
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Fig. 1. Optical conductivity for A= 1.1,y =0.1 and T/wo = 0.2 (dashed lines)
compared with T = 0 predictions of Eq. (5) (full line) and Eq. (6) (bold dashed line).
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