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a b s t r a c t

We explore the dynamics of harmonically confined single electron quantum dots as a function of dot

size when an external time varying pulsed electric field is switched on. The system of interest is a 2-D

system in the presence of a perpendicular magnetic field. We show that for given strengths of the

confining potentials, the pattern of time evolution of eigenstates of the unperturbed system reveals

significant size-dependence. The pulse duration time is also found to modulate the dynamical aspects in

a prominent way.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, significant progress has been made in the
fabrication of low-dimensional structures thereby reducing the
effective dimensions from 3-D bulk materials, to quasi-2-D
quantum wells, quasi-1-D quantum wires and even to quasi-0-D
quantum dots (QD) [1,2]. Artificial atoms or QD were extensively
studied by Chakraborty [3]. The researches on semiconductor QD
are motivated primarily by the device applicability of these
structures and partly by the scientific curiosity in modified
physical properties of mesoscopic systems. The quantum confine-
ment effects in such systems of reduced space dimension have
attracted considerable attention. Maksym and Chakraborty [4,5]
worked out the energy levels and found an incredibly rich
structure. Recently Li and Xia have studied the electronic
structures of N-quantum dot molecule (QDM). The effects of finite
offset and valance band mixing were taken into account in their
calculations [6]. Their results indicated that electron energy levels
decrease monotonically and the energy differences between the
N-QDMs decrease as the QD radius increases. They found strong
valance band mixing in long radius QD. In another work they have
studied electron and hole energy levels of an InAs self-assembled
QD in the presence of perpendicular magnetic field [7]. Here along
with finite band offset and valance band mixing they also
incorporated the effects of strain. The hole levels exhibited strong
anticrossings. The large strain and strong magnetic field decrease

the effect of mixing between heavy hole and light hole. The hole
energy levels have in general a weak field dependence compared
with the corresponding uncoupled levels. The same group also has
made some investigations on electronic structures and binding
energy levels of 2, 1 and 0-D semiconductor nanostructures in the
presence of hydrogenic acceptor impurity [8]. They performed the
calculations in the framework of effective mass envelope function
theory. The method was novel and could be widely applied in the
calculation of the electronic structures and binding energy levels
of a hydrogenic acceptor impurity in semiconductor nanostruc-
tures of various shapes and characteristics.

The dots are now supposed to be the final destination of
microelectronics, with a hope to achieve giga-level integration on
a single chip in near future. In QD the electron energy levels are
quantized and the behavior is similar to that of an atom. The QD is
regarded as the artificial atom [4,9]. The advantage of studying the
QD system is that the properties of artificial atom can be
extensively controlled by the external applied field. Hence the
QD system have been exploited to implement the quantum
devices e.g. QD laser [10,11], the single photon emitter [12,13], and
the cavity QED [14–17]. Besides, the QD is one of the promising
candidate of quantum information devices [18–21].

It is undoubtedly quite relevant and interesting to explore how
the QD systems respond dynamically to external time varying
electric fields and how the response varies from state to state.
Creffield et al. investigated how an oscillatory electric field can
drive the dynamics of a two-electron Wigner molecule held in a
square QD by using a Hubbard-type of model to describe these
states [22]. The possibility of manipulation of QD by a microwave
field has important implications in quantum computing. Such
manipulations could play important role in the study of dynamic
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localization (DL), and photon assisted tunneling through excited
states [23–28]. In the past two decades, attention of scientific
community was drawn to a different and much less trivial
example of saturation when the spectrum of H0 is essentially
unlimited in the energy space, yet after a certain time the
absorption stops. This phenomenon is known as DL. Based on an
analytical approach, Basko et al. obtained weak DL in complex
quantum systems under time-dependent perturbation described
by random matrix theory [26]. According to Floquet approach, the
DL occurs when two quasienergies of states participating in the
dynamics approach each other [29,30], and become either
degenerate or close to degenerate. This phenomenon of quasie-
nergy collapse happens not only in the QD systems but also in
superlattices [31]. They also found localization effect in a 1-D QD
array and proposed that an appropriate choice of external
parameters is obvious for DL. Zhou et al. theoretically investigated
electronic dynamic behavior in QD driven by an AC-field [32].
They reported that AC-field leads to the changes in the oscillatory
behavior of the propagating wave packet in several frequency
regimes. They found strong electronic localization in QD in the
weak coupling limit so that single electron switch may be
realized. The article by Creffield et al. [25] also reported DL in a
quantum dot under AC-driving. The research of localization effect

in QD is very important to the field of quantum computation [18]
as a structure of this kind provides a promising method of
implementing scalable arrays of quantum bits [33]. In all such
situations, the response of the system to external electromagnetic
fields of low frequency and intensity becomes important. In what
follows recently we monitored the evolution of various properties
of the 2-D dots in response to continuous or pulsed sinusoidal
electric fields either in the presence or in the absence of symmetry
breaking anharmonicity and impurity [34–37].

However, in all the model problems we addressed so far, we
have assumed that the confinement potential (parabolic) extends
up to infinity. The dot wave function was therefore assumed to
vanish at x; y!�1. QD are now realizable in various shapes and
sizes and device applications are being made. For making further
progress it is necessary that we can correlate the dynamical
aspects of the dot with dot size. As the physical dimensions of the
dot approach the nanometer scale, size effect begins to play an
important role, leading to drastic change in measured properties
[38]. As fabrication processes improve, control of dot size is
enhanced. In the last few years, semiconductor QD with tunable
size have attracted a great deal of attention, particularly in the
1:321:55mm range of optical communications [39–42]. In con-
sequence, of late, we also investigated the influence of size in
manipulating the linear and non-linear response of the QD [43,44]
and also on its electronic structure and dynamics (under external
sinusoidal electric field) [45]. In the present paper, we examine
whether any significant change occurs in the dynamics (under
pulsed field) of single carrier dots when the condition of finite and
variable spatial extension of the dot is imposed on the wave
function.

2. Method

A mesoscopic system like a QD would always be expected to
experience damping [46]. We are probing a model in which
damping is weak enough to be neglected. That means, we can
describe the system by Schrödinger equation. We may explore the
effects of damping later, treating it as a perturbation. We assume
that the electron in the dot atom has an effective mass m� and has
been confined by a harmonic potential ½V0ðx; yÞ ¼

1
2 m�o2

0ðx
2 þ y2Þ�

in the simultaneous presence of a static perpendicular magnetic
field B ð¼ r � AÞ, A being the vector potential. The stationary

states of the system are given by the eigenstates of the
Hamiltonian
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For the perpendicular magnetic field ðBx ¼ By ¼ 0Þ, and Landau
gauge used for A, the motion along z-axis is continuous while the
motion in the x2y plane is quantized and the quantized energy
levels are obtainable from the following energy eigenvalue
equation (in Cartesian coordinate system):
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oc ¼ eB=m�c is the cyclotron frequency. Introducing O2
¼ o2

0 þo2
c

we have Eq. (3) transformed into an energy eigenvalue equation
of a pair of interacting harmonic oscillator Hamiltonians Hx and Hy

with harmonic frequencies o0 and O, respectively, the interaction
operator being given by

V̂ int ¼ �i_ocy
@

@x
.

That is, our problem reduces to modelling the energy eigenvalues
and eigen vectors of the 2-D hamiltonian H0:

H0ðx; y;oc;o0Þcnðx; yÞ � Hxðo0Þ þ HyðOÞ � i_ocy
@

@x

� �
cnðx; yÞ

¼ Encnðx; yÞ. (4)

Eq. (3) reduces to the energy eigenvalue equation of a 2-D
harmonic oscillator as oc ði:e: BÞ ! 0. It would be natural there-
fore to seek diagonalization of Hðx; y;oc ;o0Þ in the direct product
basis of eigenfunctions of Hxðo0Þ and HyðOÞ. Thus, we write the
trial wave function cðx; yÞ as a superposition of the product of
harmonic oscillator eigenfunctions fnðxÞ and fmðyÞ of Hxðo0Þ and
HyðOÞ, respectively, as follows:

cðx; yÞ ¼
X
n;m

Cn;mfnðxÞfmðyÞ. (5)

In order to investigate the size-dependent properties, the spatial
extension of the dot wave function can no longer be kept same as
before, but it must be truncated at some finite value. Thus, in this
case the spatial extension of the wave function ranges from �L to
þL (instead of �1) where L represents the dot size. Accordingly
the basis functions fnðxÞ and fmðyÞ have to be modified. The
normalized, but non-orthogonal basis functions for the finite-
sized dot in the x-direction reads

fnðxÞ ¼ anHnðxÞ exp �
x2

2

� �
, (6)

where an is the normalization constant of the basis function fnðxÞ

for the finite-sized dot. Analogously, for y-direction it reads

fmðyÞ ¼ amHmðyÞ exp �
y2

2

� �
. (7)

The normalization constant an is given by the following
expression:

an ¼
1

Inn

� �1=2

, (8)
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