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a b s t r a c t

We examine the single-particle excitation and linear optical absorption spectra in the one-dimensional

(1D) extended Hubbard–Holstein model. We perform dynamical density matrix renormalization group

calculations with use of pseudo-site representation of phonons. We focus on the interplay among

phonons and elementary excitations in 1D Mott insulators. The excitations in the Mott insulators are

easily modified by the phonons. We discuss implications of the present results in light of spectroscopic

measurements in 1D cuprates.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Spectroscopic studies often provide important progress for
understanding basic electronic properties in strongly correlated
electron systems. This is because high- and low-energy physics
corresponding to charge and spin dynamics, respectively, couple
with each other in these systems. One of the current issues is
to examine the interdependence between electron–phonon (EP)
interactions and the strong electron correlation inducing the
charge and spin dynamics. It is a quite general question whether
EP interactions enhance the correlation effect or not.

In the ground states of strongly correlated electron systems,
the on-site Coulomb repulsion suppresses charge fluctuation.
Thus, the conventional Peierls instability does not occur in the
Mott insulators. However, EP interactions influence mobile
carriers doped into the Mott insulators chemically or by photo-
excitation. Since the spin and charge degrees of freedom of these
carriers strongly affect the electronic properties, it is quite
important to examine the interplay among the phonons and the
elementary excitations coming from these internal degrees of
freedom of electrons. In this paper, we address this problem in
one-dimensional (1D) cases. We believe that the study of this
particular case would contribute to better understanding of
electronic states in high-Tc cuprates.

Let us consider the nature of the elementary excitations in the
1D Mott insulators. They are called ‘spinon’, ‘holon’ and ‘doublon’
representing spin defect in the antiferromagnetic state, empty and
doubly occupied sites, respectively [1]. The spinon and holon
(holon and doublon) excitations can be seen in single-particle
excitation (photoexcitation). A characteristic feature in 1D
systems is the spin–charge separation. Thus, it is a problem
whether the spin–charge separation is robust in the presence of
EP interactions. In the presence of the intersite Coulomb
repulsion, the holon and doublon form an excitonic bound state
[2,3]. However, this exciton is different from an electron–hole pair
in semiconductors, since the strong electron correlation prohibits
the exchange of the holon and doublon [4]. This prohibition
strongly enhances a magnitude of the third-order optical non-
linear susceptibility [4–6]. Thus, it is important to understand
how the exciton is modified by EP interactions.

A piece of evidence of the coupling among phonon, spinon, and
holon has been seen in resent angle-resolved photoemission
spectroscopy (ARPES) measurement on SrCuO2 [7]. Here, the
spinon and holon excitations are directly observed for the first
time. However, the line widths of their spectra are much broader
than temperature. Then, it is expected that these excitations are
affected by EP interactions.

The effect of EP interactions on the photocarriers has been
observed by the Raman spectroscopy measurements on the 1D
Mott insulator Ca1.8Sr0.2CuO3 [8]. Here, some Raman-forbidden
peaks appear, and they show resonance enhancement for charge-
transfer excitation. This observation indicates strong coupling
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between the phonons and the photocarriers and the selection rule
is changed by EP interactions. In particular, one phonon mode is
assigned to be a breathing mode that is similar to the mode
intensively studied in high-Tc cuprates [9,10].

We examine the effect of the Holstein phonons on the single-
particle excitation and linear optical absorption spectra in the 1D
Mott insulators. For this purpose, we perform large-scale
dynamical density matrix renormalization group (DMRG) calcula-
tions in the 1D Hubbard–Holstein model with the nearest-
neighbor Coulomb repulsion [2,3,11–16]. In order to take account
of the quantum nature of the phonons, we introduce a pseudo-site
method for the phonons [16,17]. We find that the elementary
excitations are very sensitive to the EP interaction. Therefore, it is
necessary to take account of phonon effects in strongly correlated
electron systems. We discuss implications of the present results in
light of spectroscopic measurements on cuprates [7,18].

2. Formulation

The coupling between electrons and breathing phonons in the
cuprates can be mapped onto the Holstein-type interaction [19].
Thus, we start with the 1D Hubbard–Holstein model with the
nearest-neighbor Coulomb repulsion. The Hamiltonian is defined
by

H ¼ � t
X
i;s
ðcyi;sciþ1;s þH:c:Þ
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where cyi;s (ci;s) is a creation (annihilation) operator of an electron
with site i and spin s, and byi (bi) is a creation (annihilation)
operator of a phonon with site i. We neglect the dispersion of the
phonon in order to make our discussion simple. We introduce
ni � 1 instead of ni in order to eliminate boundary effects.
Hereafter we use a dimensionless electron–phonon coupling
constant defined by l ¼ g2=4to0. Here, we take o0 ¼ 0:5t.

We calculate the single-particle excitation spectrum
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and the current–current correlation function
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where j0i is the ground state with energy E0, the current operator j

is defined by

j ¼ �it
X
i;s
ðcyi;sciþ1;s �H:c:Þ (4)

and g is a small positive number. In the following calculation, the
open boundary condition is used. Then, ck;" is described by

ck;" ¼

ffiffiffiffiffiffiffiffiffiffiffi
2
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r X
l

sinðklÞck;"; (5)

where k ¼ np=ðLþ 1Þ and n ¼ 1;2; . . . ; L. In this paper, we take
L ¼ 20.

In order to calculate these quantities, the DMRG method is
applied [11,12]. In order to treat excited states in a framework of
the DMRG, we introduce the mixed-state density matrix that is

composed of the following four target states [2,3,13–16]:

j0i ¼ jc1i, (6)

Oyj0i ¼ jc2i, (7)

1

z� H
Oyj0i ¼ jc3i þ ijc4i, (8)

1

zþ 2g� H
Oyj0i ¼ jc5i þ ijc6i, (9)

where z ¼ �þ E0 þ ig for O ¼ j and z ¼ E0 � �þ ig for cyk;". The
density matrix is given by

r ¼
X6

a¼1

paTrjcaihcaj=hcajcai, (10)

where we take
P

a pa ¼ 1, and the trace is taken for the states
of the environment block. Then, the spectrum for O ¼ j and
�ooo�þ 2g (O ¼ cyk;" and �� 2gooo�) is calculated after one-
DMRG run. The number of the eigenstates in density matrix
are taken up to 400 for renormalization. In order to correctly
deal with the phononic degrees of freedom, we use the pseudo-
boson method [17]. In this method, a boson operator with a
restricted Hilbert space is exactly transformed into a set of hard-
core bosons. For instance, the boson operator with four states is
given by

by ¼ ay1 þ
ffiffiffi
2
p

ay2a1 þ ð
ffiffiffi
3
p
� 1Þay1ay2a2, (11)

with use of the hard-core boson operators ay1 and ay2. Then, step-
by-step renormalization of each bosons are carried out. It strongly
depends on the magnitude of g whether the restriction is better or
not. Thus, we systematically increase the number of the hard-core
bosons up to 16 states per site.

3. Single-particle excitation spectra

In this section, we examine how the spinon and holon
excitations are modified by the phonons. Fig. 1 shows Aðk;oÞ for
U ¼ 8t and V ¼ 0. There are two pronounced branches. One at
high-binding energy side is the holon branch, and the other is the
spinon branch. The singularity of the holon branch is smeared out
even for the relatively weak EP interaction. The singularity of the
spinon branch is still robust, although the ‘peak-dip-hump’
structure appears just below the spinon branch. The result seems
to show the spin–charge separation in the presence of the EP
interaction, since the roles of the EP interaction on the holon and
spinon branches are different. The effect of the relatively strong EP
interaction on the spinon branch is shown in the inset of Fig. 1. In
this case, the spinon branch is also smeared out. This modification
is quite anomalous, since the Holstein phonons directly couple
with the holon excitation. Furthermore, a tiny peak appears at
o�� 2t, and this peak is located at lower-binding energy side of
the zero-phonon line at o�� 2:4t. However, these results are also
understood by using an effective model based on the spin–charge
separation scenario. The model is defined by superposition of the
spectra without spin degrees of freedom:

Aeff ðk;oÞ ¼
Xp=2

q¼�p=2

Ah k� q;oþ 2t þ �s qþ
p
2

� 	� 	
, (12)

where �sðqÞ ¼ �ðpJ=2Þj sin qj and Ahðk;oÞ is the spectrum for the
Holstein model. We think it interesting to examine whether this
relation is generally satisfied for the other phonon modes.
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