

Contents lists available at ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Photocatalytic activity of La₂O₃-modified silver vanadates catalyst for Rhodamine B dye degradation under visible light irradiation

Hui Xu^{a,b}, Huaming Li^{a,*}, Guangsong Sun^a, Jiexiang Xia^b, Chundu Wu^b, Zhixiang Ye^c, Qi Zhang^a

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China

^b School of the Environment, Jiangsu University, Zhenjiang 212013, PR China

^c College of Resource and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China

ARTICLE INFO

Article history: Received 1 August 2009 Received in revised form 10 February 2010 Accepted 25 February 2010

Keywords: Photocatalytic La₂O₃/Ag₃VO₄ Visible light irradiation Degradation intermediates

ABSTRACT

La₂O₃/Ag₃VO₄ samples were synthesized by impregnation process and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). The XRD, SEM–EDS and XPS analyses revealed that La³⁺ was dispersed on Ag₃VO₄ in the form of La₂O₃ cluster. The DRS results indicated that the absorption edge of the La³⁺–Ag₃VO₄ catalyst shifted to longer wavelength. The enhanced photocatalytic activity of La₂O₃/Ag₃VO₄ for Rhodamine B (RhB) dye degradation under visible light irradiation was due to its wider absorption edge and higher separation rate of photo-generated electron and holes. The highest photodegradation efficiency was obtained when the La₂O₃/Ag₃VO₄ catalyst was calcined at 300 °C with 3 wt% La content. The photocatalytic degradation intermediates of the solution were identified by LC/MS.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Production of clean hydrogen energy and removal of environmental pollutants using photocatalysis technique have received a great deal of interest in recent few decades [1]. Photocatalytic reaction catalyzed by semiconductors has been approved as a promising process for solving energy and environmental issues [2]. Among the semiconductor catalysts, TiO₂ has been studied extensively owing to its special property [3]. However, the wide application of TiO₂ is limited in the condition of solar irradiation due to its wide band gap [4,5]. Therefore, considering energy conservation and environmental pollution issue, it is necessary and indispensable to develop high efficient and visible light-driven photocatalysts. Visible light-induced engineering includes modification of TiO₂ and development of new non-TiO2-based environmental cleaning materials [6]. Recently, several new environmental cleaning materials including BiOBr [7,8], Bi₂WO₆ [9,10], and BiVO₄ [11–13] have been exploited.

 Ag_3VO_4 with monoclinic structure has been fabricated and showed photocatalytic activity for water splitting and organic dyes degradation under visible light irradiation [14–16]. However, the photocatalytic activity of Ag_3VO_4 is still low due to its low separation rate of photo-generated electron and holes. Hu and Hu [15] present that the activity of the Ag_3VO_4 is increased by 11 times after doping NiO. It is indicated that the introduction of metal element can enhance the activity of the pure Ag_3VO_4 . Recently, it is found that La could be used as cocatalyst, which proved to play a key role in increasing photocatalytic activity [17–20].

In the present work, La_2O_3/Ag_3VO_4 samples with different La concentrations and calcination temperatures are synthesized by impregnation technique. The photocatalytic activities of the samples are evaluated by Rhodamine B (RhB) dye degradation under visible light irradiation. The relationship between the photocatalytic activity and the structure property of the catalysts is discussed. The mechanism of enhanced photocatalytic activities after doping La^{3+} is also given. In addition, the photocatalytic degradation intermediates are identified by LC/MS, and the possible degradation process of RhB dye by La_2O_3/Ag_3VO_4 is proposed.

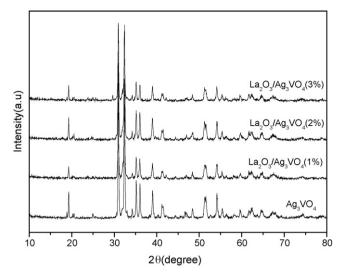
2. Experimental

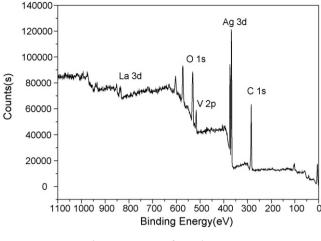
2.1. Synthesis of the photocatalysts

 Ag_3VO_4 was prepared by precipitation reaction as reported by Hu and Hu [15]. The La_2O_3/Ag_3VO_4 catalysts containing different La contents were prepared by impregnation method with the following procedure: firstly, a stoichiometric amount of La_2O_3 was dissolved in nitric acid (68%) solution. Secondly, 0.5 g of Ag_3VO_4 powder was added into the above $La(NO_3)_3$ solution. Then the suspension was stirred using a glass rod during evaporation of water

^{*} Corresponding author. Tel.: +86 511 88791800; fax: +86 511 88791708. *E-mail address:* lihm@ujs.edu.cn (H. Li).

^{1385-8947/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cej.2010.02.054




Fig. 1. XRD patterns of La₂O₃/Ag₃VO₄ samples with different La contents.


in a water bath. The as-synthesized $La^{3+}-Ag_3VO_4$ was calcined at 300 °C for 4 h. The pure Ag_3VO_4 catalyst was also calcined at 300 °C for 4 h.

2.2. Photocatalysts characterization

The crystalline phases of the prepared catalysts were analyzed by X-ray diffraction (XRD) by Bruker D8 diffractometer with CuK α radiation (λ = 1.54 Å) in the range of 2 θ = 10–80°.

The surface morphology and particle size of the samples were performed on a field emission scanning electron microscope (FESEM Model JEOL JSM-7001F). The elemental analysis of the

photocatalysts was detected by an energy-dispersive X-ray spectrometer (EDS) attached to the SEM.

The X-ray photoelectron spectroscopy (XPS) measurement was performed on the ESCALab MKII spectrometer using MgK α radiation.

The diffuse reflectance spectra (DRS) were performed on a UV-2450 (Shimadzu) instrument in the range of 240–800 nm. $BaSO_4$ was used as the reflectance standard material.

2.3. Photocatalytic activity

The photocatalytic activities of La₂O₃/Ag₃VO₄ catalysts were evaluated by the degradation of RhB dye under visible light irradiation. The photocatalytic reactor consisted of a quartz glass with

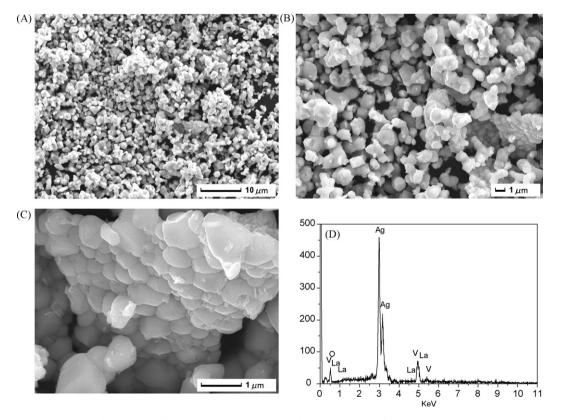


Fig. 2. Images of La₂O₃/Ag₃VO₄ sample (A–C), and (D) EDS spectrum of the La₂O₃/Ag₃VO₄.

Download English Version:

https://daneshyari.com/en/article/151820

Download Persian Version:

https://daneshyari.com/article/151820

Daneshyari.com