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Abstract

In this work, we study the p-wave superconductivity in a square lattice within a Hubbard model, in which a second-neighbour correlated

hopping Dt3 is included. An infinitesimal distortion of the right angles in the square lattice is considered, which leads to second correlated

hoppings Dt3Gd3 in the x̂Gŷ directions, respectively. This study is carried out by means of the BCS formalism and we found a triplet

superconducting ground state even though VZ0. The optimal electron density for the critical temperature and the superconducting gap is

analyzed as a function of the parameters of the model. Finally, the single-particle excitation gap is also calculated for different electron

densities.
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1. Introduction

It has been proposed that the Sr2RuO4 exhibits a spin-

triplet or p-wave superconductivity [1], in contrast to the

d-wave pairing found in many cuprates [2]. In fact, Sr2RuO4

is structurally similar to the first cuprate superconductor,

(La,Sr)2CuO4, and its electrons in the RuO2 planes are

expected to play the most important role for the supercon-

ductivity [1]. It is accepted that the so-called g band plays the

dominant role in the superconducting transition, and the

pairing on the other two bands, a and b, is induced passively

through the inter-orbit couplings [3]. Furthermore, a structural

distortion has been observed at the surface of the Sr2RuO4 [4],

although it is not clear its occurrence in the bulk. In order to

describe the electron dynamics on the RuO2 planes, a single-

band Hubbard model is considered [3,5] and, in the vicinity of

the Fermi level, the LDA band structure can be reasonably

well described by a square-lattice single g-band tight-binding

model with first- and second-neighbour hoppings t0Z0.4 and

t 00ZK0:12 eV, respectively, [6]. On the other hand, it has been

reported that the Hubbard model could lead to an anisotropic

superconducting gap if a second-neighbour correlated hopping

(Dt3) is included, in addition to the on-site U and nearest-

neighbour V repulsions [7]. In this paper, we study the effects

of a structural distortion on the p-wave superconducting state

as well as the electron density dependence of the critical

temperature and superconducting gap. By considering a small

distortion in the right angles of a square lattice, the

degeneracy of the kxGky oriented p-wave superconducting

states is broken favouring one of the p-wave states in

competition with the s- and d-wave superconducting states.

Moreover, the existence of an optimal doping in the

superconducting state is analyzed in terms of the expectation

value of the potential energy of the system. Finally, we

calculated the single-particle excitation energy gap for

different values of the electron concentration.

2. The model

We start from a Hubbard model in which first- (Dt) and

second-neighbour (Dt3) correlated-hopping interactions are

considered in addition to the on-site (U), and nearest-

neighbour (V) Coulomb interactions. This model has lead to

s- and d-wave hole-superconducting ground states without

negative U and V [7,8], hence this Hubbard Hamiltonian can

be written as [9,10]
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where c†
i;sðci;sÞ is the creation (annihilation) operator with spin

sZY or [ at site i, ni;sZc†
i;sci;s, niZni,[Cni,Y, hi,ji and hhi,jii

denote, respectively, the nearest-neighbour and the next-

nearest-neighbour sites.

Let us consider a square lattice with lattice parameter a. In

order to break the degeneracy of p-wave pairing states, we will

further consider a small distortion of the right angles in the

square lattice, which leads to changes in the second-neighbour

interactions, such as t 0 and Dt3 terms in Eq. (1), and their new

values are t 0GZ t 00Gd and DtG3 ZDt3Gd3, where G refers to

the xGy direction. Performing a Fourier transform,
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the Hamiltonian [Eq. (1)] in the momentum space becomes
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where Ns is the total number of sites,
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and 2q is the wave vector corresponding to the centre of mass

of pairs. Notice that Vkk 0q and Wkk 0q, respectively, contribute to

antiparallel and parallel spin pairings, and their main

contributions come from qZ0 terms.

Within the standard BCS formalism, a normal Hartree–Fock

decoupling of the interaction terms in Eq. (4) leads to the

following reduced Hamiltonian for pairs with parallel spins

[11,12],
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m is the chemical potential, N is the number of electrons, and
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being n the density of electrons per site. Notice that the single-

electron dispersion relation 3(k) is now modified by adding

terms nDt, 2nDtG3 and (U/2C4V)n to the hoppings t0, t 00 and the

self-energy, respectively.

At finite temperature T, the equations that determine the

superconducting gap (Dk) and the chemical potential (m) for the

case of parallel spins are [7],
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where the single-particle excitation energy (Ek) is
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