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Abstract

Tunneling spectra via Andreev bound states between a normal metal ðNÞ=dx2Ky2 -wave superconductor (S) (in the presence of a subdominant

s-wave pair potential) junction are investigated. In the present work, we employ quasiclassical Green’s function methods in order to study

the role of the proximity effect in detail. In the case of a high transparent contact to the (100) interface of the d-wave superconductor, the pair

potential penetrates into the inside of the N due to the proximity effect, where the is-wave is not indeed at all. Then, the tunneling spectra has

a very sharp zero-energy peak (ZEP). This ZEP originates from the fact that quasiparticles feel different sign of the pair potentials between

normal metals and d-wave superconductors through Andreev reflections. On the other hand, in the N/S junction with the (110) interface, the

induction of is-wave component in the S side leads to an induced is-wavepair potential also in the N side due to the proximity effect. In this

case, the interface density of states has a dip structure. We show that the spatial dependence of pair potentials is significantly sensitive to the

transparency of the junction.
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1. Introduction

Nowadays, most promising symmetry of superconducting

state of high-Tc cuprates isd-wave.One of the important features

of the d-wave symmetry is the so-called zero-bias conductance

peak (ZBCP) [1,2] due to the formation of Andreev bound states

(ABS’s) in normal metal/d-wave superconductor (N/S) junc-

tions. The ABS’s originate from the interference effect in the

predominant dx2Ky2 -wave symmetry through reflection at a

surface or an interface [3]. Up to now, the consistency between

the theories and experiments has been checked in details [1,4–7].

On the other hand, the reduction of the dx2Ky2 -wave state at the

surface or interface allows the coexistence of different symmetry

of pair potentials. The subdominant interaction induces the

broken time reversal symmetry state (BTRSS), i.e. dCis-wave

state [8,9]. The splitting of ZBCP in tunneling spectra at low

temperatures may be one of the evidence for the BTRSS.

However, as regards this point, tunneling experiments are still

controversial. Some experiments report the splitting of ZBCP,

others do not show the splitting even in low temperatures

[10,11]. More recently, it is proposed that the induced s-wave

component of the pair potential by proximity effect in the N side

may enhance the magnitude of the subdominant s-wave

component in the S side, which forms the BTRSS based on the

analysis of the tunneling experiments [12]. The proximity effect

in N/S junction without the BTRSS was theoretically studied by

Ohashi [13]. In order to understand the actual tunneling

spectroscopy quantitatively, we must study the proximity effect

in detail. Motivated by this point, we extend our previous

formula [6] to take into account the induced pair potential in the

N side. In the present paper,we study the local density of states at

the interface of N/S junctions based on the self-consistently

determined pair potentials by changing the transmission

probability of the junctions.

2. Formulation

We consider the normal metal (N)/d-wave superconductor

(S) junctions separated by an insulating interface at xZ0,

where the normal metal is located at x!0 and the dx2Ky2 -wave

superconductor extends elsewhere In order to study the

proximity effect in the N/S junction, we determine the spatial

variation of the pair potentials self-consistently. For this

purpose, we make use of the quasi-classical Green’s function

Journal of Physics and Chemistry of Solids 67 (2006) 132–135

www.elsevier.com/locate/jpcs

0022-3697/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jpcs.2005.10.034

* Correspondence author: Tel.: C81-45-491-1701; fax: C81-45-413-7288.

E-mail address: tanuma@n.kanagawa-u.ac.jp (Y. Tanuma).

http://www.elsevier.com/locate/jpcs


procedure [14] developed by Nagai and co-workers [15,16].

Here a cylindrical Fermi surface is assumed and the magnitude

of the Fermi momentum and the effective mass are chosen to be

equal both in the N and S sides. The pair potential in S [N] side

will tend to the bulk value [zero] Ds(fa,N) [DN(fa,-N)] at

sufficiently large x. We introduce the quasiclassical Green’s

functions in N and S regions given by
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In the above, Dl
aðxÞ and Fl

aðxÞðlZN;S;aZGÞ obey the

following Riccati-type equations
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where nFx is the x component of the Fermi velocity and t̂3 is

the Pauli matrix. Here umZpT(2mC1) with integer m is

the Matsubara frequency. Initial conditions of these

equations are
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The pair potentials are given by [6,13,16]
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where uc is the cutoff energy and ½ĝlaaðf
0
a;xÞ�12 denotes the 12

element of ĝlaaðf
0
a;xÞ. Here Vlðf;f0

aÞ is the effective interelec-

tron potential of the Copper pair. In our numerical calculations,

a new Dl(f,x) is calculated using Eq. (8) and ĝlaaðfa;xÞ is

obtained again from Eqs. (1)–(7). We reiterate this process

until the convergence is sufficiently obtained.
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Fig. 1. Spatial dependence of the pair potentials in the N/D junctions for various R. (a) (100) interface [qZ0], (b) (110) interface [qZp/4].
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