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Abstract

Although Bragg and Compton scattering are well-established techniques, only very few attempts to simultaneously combine information

originating from these two experiments have been made so far. This remark also holds for Bragg neutron magnetic combined with X-ray

scattering. We propose a quite general procedure to refine a quantum model from different data sets using basic Bayesian probability theory.

As an illustration, a qualitative preliminary study to extract chemical information such as charge transfer in ionic-covalent compounds is

reported.
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1. Introduction

One electron Reduced Density Matrices (1RDM) are

widely accepted to play a central role in the description of

electronic properties. Their diagonal elements are the well-

known electron densities in the chosen representation space.

Theoretical and experimental approaches are numerous but

it turns out that there is no unique way to obtain both

diagonal as well as non-diagonal elements of the 1RDM to a

good degree of accuracy. After a brief reminder on the

construction of density matrices and their relationships with

X-ray scattering experiments (Sections 2 and 3), we will

propose a possible strategy for refining a model of 1RDM

(Section 4) from experimental data sets of multiple origins.

Section 5 illustrates the joint refinement strategy for a

simple model wavefunction in ionic solids.

2. Density matrices and X-ray scattering

The usefulness of density matrices is well established

as a substitute to N-electron wavefunction when mere

one- or two-electron properties are examined [1–5]. As a

brief reminder, we emphasize here the connections

between density matrices and some X-ray scattering

cross-sections [6].

For a system of N interacting electrons described by a

unique wavefunction Jð~x1; ~x2;.; ~xNÞ; where ~xj stands for

both the spin and the position coordinates of the jth electron,

i.e. ~xjZ ðsj; ~rjÞ; the pure state N-electron density matrix is

defined by the quantity:

Gð~x1; ~x2;.; ~xN ; ~x
0
1;
~x02;.; ~x0NÞ
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At non-zero temperature, the electron gas can no longer be

described by a unique wavefunction and a thermodynamic

mixture of pure states is to be taken into account. If §i is the

probability for the system to be found in the state jJii, the

density matrix is then a weighted superposition of pure

states density matrices:
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Only the one- or two-electron, spinless reduced density

matrices are needed in the calculation of expected values of
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one- or two-electron operators. They are respectively

defined as:
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One- and two-electron reduced density matrices (hereafter

referred to as 1RDM and 2RDM, respectively) can be

calculated from quantum mechanics first principles. How-

ever, for extended systems such as solids, most of the

theoretical approaches are either limited to the Hartree–

Fock approximation, in which case the 1RDM is idempotent

and its eigenvalues are 1 or 0, or make use of the Density

Functional Theory and most of the effort then concentrates

on the diagonal part of the 1RDM.

On the experimental side, there is no unique experimen-

tal setup to directly determine the total density matrices.

Only partial information are accessible from each exper-

iment and here is probably a test case for the complemen-

tarity of different experimental approaches. Limiting

ourselves to the spinless 1RDM, and to the most popular

X-ray scattering experiments, we can mention:

† the elastic X-ray scattering, where the dynamical

structure factor reduces to

Selð~q;uÞ Z
Ð

G1ð~r; ~r
0 ÞeKi~q,~r d3r

��� ���2dðuÞ (5)

where ~q is the scattering vector and Zu; the energy transfer.

† the inelastic X-ray scattering at the high momentum and

energy transfer limit, the so-called ‘Compton regime’ in

the ‘Impulse Approximation’ (IA) framework. If we

define pzZ ðmu=qÞK ðZq=2Þ; with ~uZ ~q=q; the dynamical

structure factor writes:

SIAð~q;uÞ Z
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Zq
J ~̂uðpzÞ
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The so-called ‘Directional Compton Profile’ (DCP), J ~̂uðpzÞ;

therefore measures the Fourier transform of the auto-

correlation function, i.e. the ‘off-diagonal trace’ of the

1RDM whereas the elastic scattering gives the Fourier

transform of the diagonal elements of the 1RDM. Clearly,

the two techniques are highly complementary and ought

to be used in conjunction, possibly with other experimen-

tal methods.

3. Simple illustration of the complementarity

In order to emphasize the complementarity of the two

approaches, we make use of an oversimplified model for a

diatomic molecule. A unique orbital is considered as a

combination of two functions respectively centered on each

atom. Each atomic orbital is built from an s-type function

with a flexible additional polarization p-type function

Jð~rÞ Z N½Faðza~rÞClFbðzb~rÞ� (7)

and

Fa=bð~rÞ Z fsðrÞCma=bfpz
ð~rÞ (8)

Figs. 1–3 report different cases corresponding to bonding

or anti-bonding coupling with different polarization states.

The figures clearly show the complementarity between the

charge density and the autocorrelation function in the

investigation of the nature of the chemical bond. In

particular, as it is now well established, the accurate

knowledge of rð~rÞ; via X-ray diffraction, is essential for a

determination of the position of each atomic species, but also

for a reliable analysis of the symmetry of the electron

distribution around the nuclei. On the other hand, though it is

seldom as dramatic as in this example, the autocorrelation

function, Bð~tÞZ
Ð

G1ð~r; ~r K~tÞd3r; turns out to be very

sensitive to the polarization of the electron cloud as well as

to the relative phases of the atomic orbitals participating in

the most delocalized one-electron molecular wavefunction.

4. From single to joint refinement of the 1RDM

This part was largely inspired by the suggestions of

Sivia [7].

Let us consider a physical model M, which we postulate

to have a great relevance to the system under study. We

further assume that M depends on a set of free parameters

{an}. It is accepted that this model is formalized as a 1RDM

in some analytical or numerical form.

Assuming the pertinence of the model, we are interested

in finding the most probable values for the parameters, given

a set of available experimental data, hereafter referred to as

{D}. In other words, we wish to guess the {an} that

maximize the conditional probability PðfangjfDg;IÞ; where

I stands for all the available information about the system

apart from the set of measurements {D}. This information is

usually at the origin of the inference of M. Using Bayes

theorem, assuming an unbiased model, independent data

points each obeying a gaussian distribution law and

postulating a flat distribution for PðfangjIÞ and PðfDgjIÞ;

it is then shown that:
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