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Abstract-The non-uniqueness of the definition of finite ‘strain’ is demonstrated to lead to signifi~nt 
ambiSuit~s in the equation of state of elastic solids. The ambig~ties are resolved by the rigorous 
derivation (due to Leibfried and Ludwig) of the Mie-Griineisen equation. Closed expressions for 
&,(V) and r(F) are presented which contain no assumptions additional to those already present in 
the simple M-G equation. Numerical equations of state for NaCl and MgO are presented which 
satisfy all ultrasonic and shock-compression data. Comparison with previous tabulations for NaCi 
reveals small but significant discrepancies. 

1. FINITE STRAIN 

IT Is a well-known rest&[ 1,2] of continuum 
mechanics that the theory of finite strain may 
be written equiv~ent~y in terms of any of an 
infinite number of different definitions of the 
‘strain’. Far the case of an elastic solid (i.e. 
one possessing a free-energy function which 
is uniquely defined in terms of deformation 
and temperature), this result implies, speci- 
fically, that the stress-drain relation may be 
written equivalently in an infinite number of 
ways. 

As examples, if the strain e is defined 
implicitly in terms of the deformation R-R, by 

then the stress-strain relation is 

Here R is a vector to a point in the deformed 
lattice, & is the vector to the same point in 
the undeformed reference state, denoted in 
this section by a sub-zero. The components 
of both are referred to the same set of 

*~~ont-~obe~y Geological Observatory Contribu- 
tion No. 1424. 

Cartesian axes. e is the finite strain tensor 
defined by (1). u is the (homogeneous) stress 
at the point R. 1 is the unit 3 x 3 tensor, 
(I), = Z&. F is the ~elmholtz free energy, or 
‘elastic energy’ function. 11 is the symmetric 
finite strain tensor defined in relation toe by 

qii = * feij f eji -t etie,+). (3) 

Equation (2) is exact, i.e. independent of the 
size of e. Zt is derived by, e.g. Leibfried and 
Ludwig [ 31 and by Murnaghan [4]. 

Alternatively, the strain f can be defined 
implicitly by 

R-R, = fR 

and then the stress-&ram relation is 

(4) 

with the symmetric tensor E defined in relation 
tofby 

Elj S 4 t .& +f$ -fmjfmi ) - (6) 

Equation (5) is afso exact, though its general- 
ity is restricted to special situations, including 
the impo~ant cases of isotropic bodies, and of 
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pure strains unaccompanied by rotations. It is 
derived by, e.g. Mu~aghan [S]. 

Not directly involved in the proofs of (2) 
and (5) are the relations between strain and 
volume change: 

*= ldet (1+2r))] (7) 

*= jdet (1-2~)) 

V is, of course, specific volume. 
The difference between these two defini- 

tions of strain (1) and (4) is clearly in the 
choice of the characteristic lengths used as 
coefficients of the strain on the RHS of the 
two definitions. In the first case. the character- 
istic lengths are taken from the reference 
state; in the second. from the deformed state. 
Because of this essential difference, the 
strains e and q are called Lagrangiun or 
~ut~rju~ definitions of strain; the strains 
f and E are called Euierian or spatiaf. These, 
and other de~nitions of strain can be, and have 
been, derived with more generality than is 
needed here. An elegant. and exhaustive. 
discussion of finite strain is given by 
Truesdell[ 11; a more limited, pedagogic 
treatment is given by Thomsen[6]. 

Although (2) and (5) are exact. their useful- 
ness is limited by the need for expressions for 
the free energy as a function of the strain. 
In general, the physical description of the 
free energy in terms of interatomic forces. 
etc. will impose requirements on the choice of 
a definition of strain[7]. Also, any approxi- 
mations made in F will affect the results of the 
choice of a definition of strain. Hence, the 
appfication of (2) and (5) to* real solids will 
not be exact, and further, will depend critically 
upon the choice of a definition of strain. 
Different choices lead to non-equivalent 
equations of state. 

As an illustration of this. consider the 
special case of hydrostatic pressure P on an 
isotropic body. Both (2) and (5) reduce to 

p=_ F 
( > av . 

Equations (7) and (8), however, do not reduce 
to the same form, but rather to 

(74 
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=- ( > v 71m 
(8b) 

The fact that V, appears in the denominator 
of (7a) and in the numerator of (8a) is an 
expression of the essential difference between 
the Lagrangian and the Eulerian definitions 
of strain. 

If the free energy is assumed to be of the 
form 

i, 
F=z Aiq” (10) 

i=l 

with i, = 3, then (9) and (7a) give the third- 
order Lagrangian isotherm 

P=$Ko(y”3-y-1’3)[1-$K;(y-2’3-1)] (11) 

where y is the volume ratio 

vo y=-=P* 
V PII 

(12) 

Here the coefficients Ai have been evaluated 
in terms of the boundary value measurements 
at the reference state, taken here to be 
defined by P = 0, T = T,, = room tempera- 
ture. K is the isothermal incompressibility: 
K’ is (dK/aP),: p is density. This equation 
appears in Murnaghan’s 195 1 monograph [4], 
p. 71. 

As is clear from the symmetry apparent in 
(2) and (5), or in (9), (7a) and @a), an assump- 
tion equally as plausible (at this point in the 
argument) as ( 10) is 
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