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Abstract — The non-uniqueness of the definition of finite ‘strain’ is demonstrated to lead to significant
ambiguities in the equation of state of elastic solids. The ambiguities are resolved by the rigorous
derivation (due to Leibfried and Ludwig) of the Mie-Griineisen equation. Closed expressions for
&o{V'}y and y{¥) are presented which contain no assumptions additional to those already present in
the simple M-G equation. Numerical equations of state for NaCl and MgO are presented which
satisfy all ultrasonic and shock-compression data. Comparison with previous tabulations for NaCl

reveals small but significant discrepancies.

1. FINITE STRAIN

I't 15 a well-known result[1, 2] of continuum
mechanics that the theory of finite strain may
be written equivalently in terms of any of an
infinite number of different definitions of the
‘strain’. For the case of an elastic solid (i.e.
one possessing a free-energy function which
is uniquely defined in terms of deformation
and temperature), this result implies, speci-
fically, that the stress—strain relation may be
written equivalently in an infinite number of
ways.

As examples, if the strain e is defined
implicitly in terms of the deformation R-R, by

R-R, = eR, H
then the stress—strain relation is
aF 1
o= (I+e) (&;)T(i—%ei‘)i;. @)

Here R is a vector to a point in the deformed
lattice, R, is the vector to the same point in
the undeformed reference state, denoted in
this section by a sub-zero. The components
of both are referred to the same set of
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Cartesian axes. e is the finite strain tensor
defined by (1). & is the (homogeneous) stress
at the point R. 1 is the unit 3X3 tensor,
(1);; = 8y. F is the Helmboltz free energy, or
‘elastic energy’ function. n is the symmetric
finite strain tensor defined in relation toe by
Ny = eyt eu+emiem) 3)
Equation (2) is exact, i.e. independent of the
size of e. It is derived by, e.g. Leibfried and
Ludwig[3] and by Murnaghan[4].
Alternatively, the strain f can be defined
implicitly by

R-R, = fR 4
and then the stress-strain relation is
aFy 1
o= (1—2¢) (52){*7 )

with the symmetric tensor € defined in relation
tofby

€5 =3 (fi+F5s—Fmifmi)- (6)
Equation (5) is also exact, though its general-

ity is restricted to special situations, including
the important cases of isotropic bodies, and of
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pure strains unaccompanied by rotations. It is
derived by, e.g. Murnaghan{5].

Not directly involved in the proofs of (2)
and (5) are the relations between strain and
volume change:

(VKO)Z — |det (1+27)| (1)
(%)2 = |det (1-2€)| ®

V is. of course, specific volume.

The difference between these two defini-
tions of strain (1) and (4) is clearly in the
choice of the characteristic lengths used as
coefficients of the strain on the RHS of the
two definitions. In the first case, the character-
istic lengths are taken from the reference
state; in the second. from the deformed state.
Because of this essential difference, the
strains e and % are called Lagrangian or
material definitions of strain: the strains
f and € are called Eulerian or spatial. These,
and other definitions of strain can be, and have
been, derived with more generality than is
needed here. An elegant, and exhaustive.
discussion of finite strain is given by
Truesdell[1]; a more limited, pedagogic
treatment is given by Thomsen[6].

Although (2) and (5) are exact, their useful-
ness is limited by the need for expressions for
the free energy as a function of the strain.
In general, the physical description of the
free energy in terms of interatomic forces.
etc. will impose requirements on the choice of
a definition of strain[7]. Also, any approxi-
mations made in F will affect the results of the
choice of a definition of strain. Hence, the
application of (2) and (5) to real solids will
not be exact, and further, will depend critically
upon the choice of a definition of strain.
Different choices lead to non-equivalent
equations of state.

As an illustration of this. consider the
special case of hydrostatic pressure P on an
isotropic body. Both (2) and (5) reduce to
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Equations (7) and (8), however, do not reduce
to the same form, but rather to

A o
] -
- (%)2{37;. (8b)

The fact that V, appears in the denominator
of (7a) and in the numerator of (8a) is an
expression of the essential difference between
the Lagrangian and the Eulerian definitions
of strain.

If the free energy is assumed to be of the
form

i=1
with i, = 3, then (9) and (7a) give the third-
order Lagrangian isotherm

P=3K,(y"*—y "®)[1-1Ks(y"?2—1)] (11)
where y is the volume ratio

Vo p

y:—:—-

2y (12)
Here the coefficients 4; have been evaluated
in terms of the boundary value measurements
at the reference state, taken here to be
defined by P=0, T = T,=room tempera-
ture. K is the isothermal incompressibility;
K' is (0K/oP)y: p is density. This equation
appears in Murnaghan’s 1951 monograph[4],
p.71.

As is clear from the symmetry apparent in
(2) and (5), or in (9), (7a) and (8a), an assump-
tion equally as plausible (at this point in the
argument) as (10) is
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