Materials Chemistry and Physics 181 (2016) 391-396

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

Direct liquid phase deposition fabrication of waxberry-like magnetic Fe₃O₄@TiO₂ core-shell microspheres

Jian Zheng ^{a, *}, You Wu ^a, Quanping Zhang ^a, Yintao Li ^a, Chengyang Wang ^b, Yuanlin Zhou ^{a, **}

^a State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, PR China

^b Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany

HIGHLIGHTS

- Waxberry-like core-shell Fe3O4@-TiO2 microspheres were fabricated by facile LPD route.
- They have considerable saturation magnetization and small coercivity.
- They can be used as recyclable photocatalyst for removal of dyestuff in aqueous solution.
- The growth mechanism of the coreshell structure was proposed.

ARTICLE INFO

Article history: Received 8 December 2015 Received in revised form 9 June 2016 Accepted 19 June 2016 Available online 23 June 2016

Keywords: Inorganic compounds Core-shell structure Magnetic material Photocatalysis Liquid phase deposition

G R A P H I C A L A B S T R A C T

ABSTRACT

Magnetic Fe₃O₄@TiO₂ core-shell microspheres are ideally applied in several specific fields due to their unique properties. A facile liquid phase deposition route for the fabrication of Fe₃O₄@TiO₂ core-shell microspheres was developed. The core-shell structure was obtained by direct deposition of TiO₂ on the surface of Fe₃O₄ microspheres. The prepared products were characterized by using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The waxberry-like microspheres were nearly spherical with diameters of about 500 nm and average shell thickness of 80 nm. The shell layer was composed of smaller primary TiO₂ nanoparticles with sizes from 10 to 20 nm. A possible growth mechanism of the core-shell structure was proposed. The photo-catalytic decomposition of methylene blue and the recycling of prepared coreshell microspheres were also investigated.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fe₃O₄ is a kind of important functional material, which has

http://dx.doi.org/10.1016/j.matchemphys.2016.06.074 0254-0584/© 2016 Elsevier B.V. All rights reserved. interesting physical properties such as considerable magnetic behavior and strong spin polarization [1–3]. TiO₂ possesses several attractive features like highly chemical stability, photoactivity, nontoxicity, antimicrobial activity, and excellent affinity to organic compounds [4–8]. The hierarchical structure by combining micro/ nano TiO₂ particles and magnetic carrier is a promising method to extend their application in several specific fields [9–13]. For example, Fe₃O₄@TiO₂ core-shell materials have been prepared for

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: zhengjian@swust.edu.cn (J. Zheng), zhouyuanlin@swust.edu. cn (Y. Zhou).

the electromagnetic or microwave absorption. They exhibited higher anisotropy energy and better wave absorption capacity than their bare Fe₃O₄ competitor [10,11]. Fe₃O₄@TiO₂ particles have also been used in the proteome analysis. Phosphopeptides could be effectively identified and enriched by MALDI-TOF mass spectroscopy due to the magnetic properties of Fe₃O₄ and the affinity of TiO₂ towards phosphopeptides [12–14]. As a photoactivatable material, TiO₂ will generate oxidative radicals under UV irradiation, which makes it become photosensitizer for cancer cells. The prerequisite to this purpose is that photoactive particles and anti-cancer drug are simultaneously delivered. It has been proved that maganetic Fe₃O₄@TiO₂ is an ideal candidate that can act as both the photoactive particle and drug transporter [9,15].

In addition, TiO_2 is one of the most extensively used catalysts in photocatalytic degradation of dye and organic contaminant in wastewater [16–18]. However, the separation and recycling of very small TiO₂ particles suspended in solution remains a challenge. Especially in large-scale use, it takes up a substantial part of the total cost. In order to effectively separate TiO₂ from the treated solution, the photocatalysts with magnetic core and TiO₂ shell have been designed and investigated [19–21]. In many cases, magnetic photocatalysts showed generally lower activities than pure TiO₂. One of the reasons is that the calcination treatment during the preparation of magnetic photocatalysts conducted at higher temperature caused the Fe³⁺ ions to diffuse into the TiO₂ lattice which led to the trapping of electrons and holes [16,17,21]. The development of a simple synthesis route without calcination is the potential trick to overcome this defect.

Up to now, Fe₃O₄@TiO₂ core-shell structures have been fabricated through sol-gel, co-precipitation, hydrothermal, and template routes [11,12,22]. However, those processes required three or even more steps. A multi-step route to prepare well-defined Fe₃O₄@TiO₂ core-shell structure was successfully developed by Li et al. [12]. This method began with the solvothermal formation of Fe₃O₄, and then a hydrothermal process to obtain Fe₃O₄@C, further the adsorption of tetrabutyl titanate on Fe₃O₄@C, and finally an additional calcination to remove the carbon. Alternatively, Zhu proposed another method for the Fe₃O₄@TiO₂ core-shell nanotubes. γ -Fe₂O₃ were obtained as the first step [11]. γ -Fe₂O₃@TiO₂ were then synthesized by a wet-chemical method. In the third step, the obtained γ -Fe₂O₃@ TiO₂ was then reduced at 623 K for 5 h under H₂ to finally get the Fe₃O₄@TiO₂ core-shell nanotubes. Xuan et al. reported that hollow spherical Fe₃O₄@TiO₂ photocatalysts were prepared through a poly(styrene-acrylic acid) (PSA) template method, which contained three steps as well, i.e., the synthesis of PSA@Fe₃O₄ composite spheres, the synthesis of PSA@ Fe₃O₄/ $Ti(OH)_x$ core-shell spheres, and the last step of getting $Fe_3O_4@TiO_2$ by hydrothermal removal of PSA [22].

Liquid phase deposition (LPD) is a novel process for preparing oxides thin films from aqueous solutions at room temperature [23–25]. It has been also applied to fabricate TiO₂ with core-shell structure, such as TiO₂-SiO₂, Au-TiO₂, and MnCO₃-TiO₂ [26–28]. In a typical process, metal oxide deposited onto the immersed template through the chemical equilibrium reaction between metal fluoro complex ions and metal oxide. The expected reactions in the preparation of TiO₂ by LPD processed as follows:

$$\mathrm{TiF}_{6}^{2-} + 2\mathrm{H}_{2}\mathrm{O} \rightleftharpoons \mathrm{TiO}_{2} \downarrow + 6\mathrm{F}^{-} + 4\mathrm{H}^{+} \tag{1}$$

 $BO_3^{3-} + 4F^- + 6H^+ \rightleftharpoons BF_4^- + 3H_2O$ (2)

As the hydrolysis of $(NH_4)_2 TiF_6$, TiO_2 would be formed and deposited on the surface of Fe_3O_4 template (or suspended in the solution) (Equation (1)). Generally, this reaction slowly occurred at room temperature. As adding H_3BO_3 to the solution to consume the

 F^- and H^+ ions (Equation (2)), the reaction in Equation (1) was accelerated by shifting to the right-hand side. However, there have been few work that successfully prepared Fe₃O₄@TiO₂ core-shell microspheres by liquid phase deposition.

In this work, a facile direct LPD synthesis route to fabricate waxberry-like magnetic $Fe_3O_4@TiO_2$ core-shell spheres was developed. The shell layer with 80–100 nm in thickness contained smaller primary TiO₂ nanoparticles in size from 10 to 20 nm that were successfully loaded on the surface of Fe_3O_4 microspheres at room temperature. A possible growth mechanism of the $Fe_3O_4@$ -TiO₂core-shell structure was also proposed. In addition, the photocatalytic activity and the recycle efficiency of the magnetic coreshell microspheres were evaluated by decolorization of MB in aqueous solution.

2. Materials and methods

2.1. Synthesis of Fe₃O₄ microspheres

All chemicals used here were analytical-grade and without further purification. Magnetic Fe_3O_4 core microspheres were prepared by the solvothermal reaction as described in our previous work [29]. In a typical experiment, 2.5 mmol of $FeCl_3 \cdot 6H_2O$ was dissolved in 30 mL of ethylene glycol to form a clear solution. 25 mmol $CO(NH_2)_2$ was then added into the solution. After vigorous stirring for 30 min, the mixture was transferred into a Teflon-lined stainless steel autoclave and heated at 473 K for 12 h. The black solid products were obtained after washing with absolute ethanol and being dried at 333 K overnight.

2.2. Synthesis of Fe₃O₄@TiO₂ core-shell microspheres

Fe₃O₄@TiO₂ was synthesized by liquid phase deposition route at room temperature. Fe₃O₄ core microspheres, $(NH_4)_2TiF_6$, and H₃BO₃, were used as the template, Ti Source, and the fluoride ions consumer, respectively. $(NH_4)_2TiF_6$ and H₃BO₃ were dissolved separately in distilled water to form the master solutions at a concentration of 0.5 mol L⁻¹. Typically, 50 mL of $(NH_4)_2TiF_6$ and 100 mL of above H₃BO₃ solutions were mixed in a beaker flask. As stirring, 500 mg of Fe₃O₄ microspheres were then added into the mixture. TiO₂ was formed and deposited on the surface of Fe₃O₄ microspheres during the hydrolysis of $(NH_4)_2TiF_6$. In order to investigate the influence of reaction time on the preparation of Fe₃O₄@TiO₂, the reaction system was kept at 298 K for 4, 12, 18, and 26 h, respectively.

2.3. Characterization

Scanning electron microscopy (SEM) images were obtained using a Hitachi S-3400 field emission electron microscope at an accelerating voltage of 20 kV. X-ray powder diffraction patterns (XRD) were collected on a Philips X'pert PRO diffractometer using Cu K α radiation ($\lambda = 0.15406$ nm), with an accelerating voltage of 40 kV and tube current of 40 mA. Fourier Transform Infrared (FTIR) spectra were measured on a Bruker Tensor 27 spectrometer with KBr pellets. The resolutions were 4 cm⁻¹ and 16 scans for each measurement. The magnetic properties of the samples were investigated by using a vibrating sample magnetometer (VSM, 7407, LakeShore) with applied magnetic fields up to 18 kOe at 300 K.

2.4. Evaluation of photocatalytic activity

Photocatalytic decomposition of MB was evaluated in a 250 mL quartz reactor. A 300 W Xenon-lamp was used to simulate the

Download English Version:

https://daneshyari.com/en/article/1520479

Download Persian Version:

https://daneshyari.com/article/1520479

Daneshyari.com