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� A QSPR model of the glass transition
temperature of polyacrylates was
build.

� The polymers structure encoding al-
ternatives for this type of studies
were explored.

� The validation procedures revealed
very good predictive attributes by the
model.
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a b s t r a c t

The glass transition temperature, Tg, is one of the most important properties of amorphous polymers. The
ability to predict the Tg value of a polymer prior to its synthesis it is of great value. For this reason we
performed a predictive Quantitative StructureeProperty Relationships (QSPR) analysis of Tg. The study
explored the best way to encode the polymers structure for this type of studies, finding that the optimal
option is using three monomeric units. The best linear model constructed from 126 molecular structures
incorporated eight molecular descriptors and showed very good predictive ability, being a very simple
and straight forward method for the prediction of Tg for polyacrylates since three dimensional de-
scriptors were not used.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The glass transition temperature, Tg, also known as the glass
temperature or the glasserubber transition temperature, is one of
the most important properties of amorphous polymers [1].

As the temperature of a polymer drops below Tg, it behaves in an
increasingly brittle manner. As the temperature rises above the Tg,

the polymer becomes a rubber-like material. Thus, knowledge of Tg
is essential in the selection of materials for various applications. In
general, values of Tg well below room temperature define the
domain of elastomers and values above room temperature define
rigid structural polymers [1].

In the vicinity of Tg, a polymer experiences a sudden increase in
the rate of molecular motions and, as a result, undergoes a series of
conformational transformations. The torsional oscillations and/or
rotations about most of the backbone bonds are activated, which
causes a sharp increase in the free volume of the system as it is
converted from the initial rigid (glassy) state to quasi-liquid state
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[2]. As a result of these processes, many physical properties of
polymers change dramatically; for example, their coefficients of
thermal expansion, heat capacities, and viscosities. The Tg is diffi-
cult to determine experimentally and predict theoretically because
the transition takes place over a comparatively wide temperature
range and is dependent on conditions such as the method of
measurement, duration of the experiment, and pressure during the
measurement [3,4]. The Tg is also very dependent on the structural
(cross-linking, chain stiffness) [5], constitutional (additives, fillers,
impurities) [6], and conformational (tacticity) features of polymers
[1,4,7]. For these reasons, the discrepancies between reported
values of Tg in the literature can be quite high [8].

Numerous researchers have attempted to predict Tg for poly-
mers on the basis of Quantitative Structure Property Relationships
(QSPR). According to the view of Katritzky et al., there are two
kinds of approaches, the empirical and the theoretical [8].
Empirical methods correlate the studied property with other
physical or chemical properties of the polymers, for instance,
group additive properties (GAP) [1]. The GAP methodology is an
entirely empirical approach, restricted to systems made merely of
functional groups that have previously been investigated. It is an
approximate method, since it fails to account the presence of
neighboring groups or conformational influences. The most
extensively referenced model made from theoretical estimations
was proposed by Bicerano [4]; this regression model (R ¼ 0.9749,
s ¼ 24.65 K) related the Tg with the solubility and the weighted
sum of 13 structural parameters for a data set of 320 polymers;
however the model was not tested on an external set, hence its
validation was not assured.

Katritzky et al. [9] develop a mode with R2 of 0.928 using 22
medium molecular weight polymers consisting of four parameters.
Not presenting details about theway structures were encoded, only
mentioning that tree to five monomeric units were used. Later on,
Katritzky et al. [8] used CODESSA to predict the Tg for 88 linear
homopolymers using five parameters and generated a QSPR model
with a standard error of 32.9 K for Tg. In this case three monomeric
units were used but no analysis was done to determine this num-
ber. In both these works, no external test sets were used; hence the
models were not properly validated. Cao and Lin [10] tested the
same set of 88 polymers using five parameters with clear physical
meanings, calculated from individual repeating unit structures,
finding a model with coefficient of determination of R2 ¼ 0.9056
and a standard error of 20.86 K. Once more, the model was not
properly validated by an external test set.

Mattioni and Jurs [11] developed a 10-descriptor model using
the structure of the monomer of 165 polymers, to predict Tg values
using Artificial Neural Networks, the training set rms error was
10.1 K (R2 ¼ 0.98) and a prediction set (17 polymers) rms error of
21.7 K (R2 ¼ 0.92). In addition, an 11-descriptor model using one
repeating unit from 251 different polymers, in this case, the
training set rms error was 21.1 K (R2¼ 0.96) and a prediction set (25
polymers) rms error 21.9 K (R2 ¼ 0.96). Although the size of the
prediction set is rather small, the results indicate that the use of the
repeating unit instead of the monomer structure has a better pre-
dictive ability. In this article no further trials were done to attempt
to determine the best number of repeating units to encode the
structures.

A comprehensive neural network model with 28 descriptors
was developed by Chen et al. [12] to predict Tg values of 6 randomly
selected polymers from a database containing 71 polymers. The
network was trained with the remaining 65 polymers, using de-
scriptors calculated from individual repeating unit structures, and
had training root mean square error of 17 K (R2 ¼ 0.95) and pre-
diction average error of 17 K (R2 ¼ 0.85). Arriving at a presumably
good model, however the number of test set polymers seems

excessively low and the descriptors used excessively high, hence
the predictivity of the model is uncertain.

A Support Vector Machine-based QSPR for the Prediction of
Glass Transition Temperatures using 77 polymers was done by Yu
[2]. Finding a model with root mean square (rms) errors for the
training (38 polymers), validation (18 polymers) and prediction set
(21 polymers) of 12.13, 15.58, and 16.22 K, respectively. Polymers
were represented by one repeating unit end-capped by two
hydrogen atoms, to calculate molecular descriptors.

An artificial neural network prediction of glass transition tem-
perature using 113 polymers was done by Liu et al. [13], the final
optimum neural network with produced a training set root mean
square error (RMSE) of 11 K (R ¼ 0.973) and a prediction set RMSE
of 17 K (R ¼ 0.955). To calculate the descriptors, the polymers were
represented by their corresponding monomer.

As can be appreciated, none of the previous studies have eval-
uated the optimal number of monomeric units to represent the
polymer structure in the prediction of Tg.

Recently a study using flexible descriptors successfully modeled
a different property, the refractive index, using 234 structurally
diverse polymers [14]. In this case the best found alternative was to
encode the polymers with two repeating units.

In the case of polymer studies, it is not possible to calculate the
molecular descriptors directly from the entire structure, since
polymers possess very high molecular weights; moreover the size
of the molecular chains may vary from different polymer prepa-
rations. Hence, the way to encode the molecules becomes a crucial
part of a QSPR study involving polymers.

For that reason, the main objective of the present work is to
study the best way to encode polymers in QSPR studies, in order to
obtain reliable predictions based on a straight forward method. In
order to do so, a dataset consisting of 126 polyacrylates was
selected. Only polyacrylates were included in this study aiming to
have a structurally similar set, and consequently producing more
precise models.

2. Methods

2.1. Data sets

To carry out this study, a total of 126 polyacrylates with
experimental Tg were taken from a published compilation [15], to
our knowledge this set of molecules was not employed in this
type of study before. Only the polyacrylates family was chosen
aiming to produce a more specific and precise study. The
experimental Tg values along with the SMILES structure repre-
sentation can be found on Table S1. SMILES notation was chosen
as a way of sharing the dataset with any interested reader, since
it allows easily copying the text string and entering it in many
chemical structure representation software. The data-set was
divided into a training set of 84 and a test set of 42 polymers by
applying a k-means cluster analysis [16], in order to have
representative molecules of the structure diversity of the com-
plete dataset in both training and test sets.

Following the procedure done by of Katritzky et al. [8] where Tg
was divided by the molecular weight of the repeating unit (M), and
after some preliminary tests that showed that using Tg/M presented
better correlation results than using directly Tg; it was decided to
use Tg/M for the study.

The experimental measure of Tg is a difficult task, which is
revealed in the dispersion of experimental data for some polymers,
complicating the correlation studies since they rely on the quality
of the experimental dataset. When more than one value was found
for the same polymer an average was used.
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