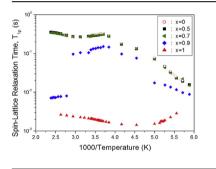
Contents lists available at ScienceDirect

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

Changing structural properties of mixed crystals $[N(CH_3)_4]_2Zn_{1-x}Co_xCl_4$ (x = 0, 0.5, 0.7, 0.9, and 1) by magic angle spinning nuclear magnetic resonance


Ae Ran Lim^{a, b}

^a Department of Science Education, Jeonju University, Jeonju 560-759, South Korea
 ^b Department of Carbon Fusion Engineering, Jeonju University, Jeonju 560-759, South Korea

HIGHLIGHTS

- Chemical shift and spin-lattice relaxation time in rotating frame.
 Two crystallographically different
- ions a-N(CH₃)₄ and b-N(CH₃)₄.
- Structural properties of mixed crystals.

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Article history: Received 3 January 2015 Received in revised form 9 January 2016 Accepted 12 January 2016 Available online 18 January 2016

Keywords: Intermetallic compounds Crystal growth Nuclear magnetic resonance (NMR) Ferroelasticity

ABSTRACT

Temperature dependences of the chemical shift and spin-lattice relaxation time in the rotating frame $T_{1\rho}$ were measured for ¹H and ¹³C nuclei in mixed crystals of the form $[N(CH_3)_4]_2 Zn_{1-x} Co_x Cl_4$ (x = 0, 0.5, 0.7, 0.9, and 1). The mixed crystals varied in color according to the amount of Co^{2+} ions, whereas the phase transition temperatures remained nearly unchanged. $[N(CH_3)_4]_2 ZnCl_4$ and $[N(CH_3)_4]_2 Cocl_4$ crystals contain two nonequivalent types of a-N(CH_3)_4 and b-N(CH_3)_4. The two crystallographically different ions a-N(CH_3)_4 and b-N(CH_3)_4 were distinguished using ¹³C CP/MAS NMR spectroscopy. The NMR spectrum and $T_{1\rho}$ for ¹H and ¹³C in case of x = 0.5 and x = 0.7 were similar to those for $[N(CH_3)_4]_2 ZnCl_4$, whereas those for x = 0.9 were absolutely different. Additionally, $[N(CH_3)_4]_2 Zn_{0.1}Co_{0.9}Cl_4$ exhibited the structural properties of both $[N(CH_3)_4]_2 ZnCl_4$ and $[N(CH_3)_4]_2 Cocl_4$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Single crystals of the forms $[N(CH_3)_4]_2ZnCl_4$ and $[N(CH_3)_4]_2CoCl_4$ belong to the group of A_2BX_4 -type crystals, many of which have an incommensurate (INC) phase in their phase transition sequence [1-4]. Crystals of this type have attracted considerable interest owing to their several phase transitions.

Tetramethylammonium tetrachlorozincate, $[N(CH_3)_4]_2ZnCl_4$, undergoes five phase transitions, which occur at 161 K (=T_{C5}), 181 K (=T_{C4}), 276.3 K (=T_{C3}), 279 K (=T_{C2}), and 296 K (=T_{C1}), respectively [5–11]. Previous studies have concluded that $[N(CH_3)_4]_2ZnCl_4$ crystals exist in six phases: I, II, III, IV, V, and VI, in order of decreasing temperature. The crystal structure of phase I is orthorhombic. The transition from the normal (I) to the incommensurate (II) phase occurs at $T_{C1} = 296$ K. The corresponding symmetry changes are as follows: the ferroelectric phase III is orthorhombic

E-mail addresses: aeranlim@hanmail.net, arlim@jj.ac.kr.

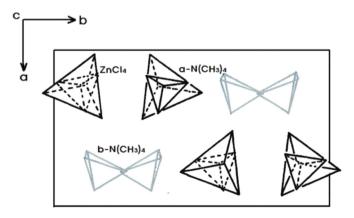
http://dx.doi.org/10.1016/j.matchemphys.2016.01.032 0254-0584/© 2016 Elsevier B.V. All rights reserved.

with space group *P*2₁*cn*; the ferroelastic phase IV is monoclinic with space group $P2_1/n$; the ferroelastic phase V is monoclinic with space group $P2_1/c$; and finally, phase VI is orthorhombic with space group Tetramethylammonium tetrachlorocobaltate, [9]. $P2_{1}2_{1}2_{1}$ [N(CH₃)₄]₂CoCl₄, undergoes six phase transitions, which occur at 122 K (=T_{C6}), 192 K (=T_{C5}), 276 K (=T_{C4}), 277.6 K (=T_{C3}), 280.1 K $(=T_{C2})$, and 293 K $(=T_{C1})$, respectively [12–14]. Previous studies have shown that [N(CH₃)₄]₂CoCl₄ crystals exist in seven phases: I, II, III, IV, V, VI, and VII, in order of decreasing temperature [12]. Phase I, which occurs at the highest temperature among all of the phases, has Pmcn symmetry and an orthorhombic structure. The phase existing between 293 and 280.1 K is incommensurate [15-18], and that between 280.1 and 277.6 K is an orthorhombic commensurate ferroelectric phase [19]. Phase IV, which exists between 277.6 and 276 K, is an orthorhombic ferroelectric phase, phase V is a monoclinic ferroelastic phase, and phase VI is a monoclinic paraelectric phase [20]. It should be noted that $[N(CH_3)_4]_2CoCl_4$ undergoes successive phase transitions that are similar to those of [N(CH₃)₄]₂ZnCl₄ [21–23].

[N(CH₃)₄]₂ZnCl₄ and [N(CH₃)₄]₂CoCl₄ have been studied using various experimental techniques and by several research groups [24–40]. Blinc et al. [41] investigated ¹³C spin-lattice relaxation time using nuclear magnetic resonance (NMR) measurements and revealed reorientation motion of both the CH₃ groups and the N(CH₃)₄ ions in [N(CH₃)₄]₂ZnCl₄. Additionally, Niemela and Heinila [42] reported on ¹H spin-lattice relaxation time in polycrystalline [N(CH₃)₄]₂ZnCl₄. They discussed the reorientation motion of CH₃ groups at low temperatures and the tumbling motion of N(CH₃)₄ ions at high temperatures. In our previous studies, ¹H spin-lattice relaxation times in the laboratory frame, T_1 , and in the rotating frame, T_{10} , were discussed near the phase transition temperatures in [N(CH₃)₄]₂ZnCl₄ crystals [23,43,44]. From these results, the molecular motion resulting from the T₁ values for ¹H were reported, and the existence of chemically equivalent N(CH₃)₄ ions in phase I and the existence of the ferroelastic characteristic of the N(CH₃)₄ ions in phases IV and V were discussed. The ¹H NMR and ¹³C NMR of the phase transition in [N(CH₃)₄]₂ZnCl₄ were studied by Blinc et al. [41] and Dolinsek et al. [45]. Additionally, ¹H spin-lattice relaxation times in the laboratory frame, T_1 , and in the rotating frame, $T_{1\rho}$, near the phase transition temperatures of [N(CH₃)₄]₂CoCl₄ have been investigated [46,47]; ¹H $T_{1\rho}$ in the ferroelastic phase undergoes the molecular motion, and the existence of two chemically nonequivalent a-N(CH₃)₄ and b-N(CH₃)₄ ions in the ferroelectric phase and the existence of the ferroelastic twin structure of the N(CH₃)₄ ions in the ferroelastic phase were reported through ¹³C MAS NMR. Recently, the various crystallographic structures of the mixed crystals $[N(CH_3)_4]_2 Zn_{1-x} Cu_x Cl_4$ (x = 0, 0.1, 0.3, 0.5, and 1) have been discussed by considering the different chemical shifts observed in ¹H MAS and ¹³C CP/MAS NMR spectra [48].

In the present study, $[N(CH_3)_4]_2Zn_{1-x}Co_xCl_4$ (x = 0, 0.5, 0.7, 0.9, and 1) single crystals were grown from aqueous solutions using the slow evaporation method. We measured the temperature dependence of the cross-polarization/magic-angle spinning (CP/MAS) NMR spectrum for ¹H and ¹³C nuclei of $[N(CH_3)_4]_2Zn_{1-x}Co_xCl_4$ in these solid solutions. In addition, spin-lattice relaxation times in the rotating frame, T_{1p} , for ¹H and ¹³C nuclei in $[N(CH_3)_4]_2Zn_{1-x}Co_xCl_4$ according to the amount of impurity Co^{2+} ions were determined. This is the first investigation of the local structures of $[N(CH_3)_4]_2Zn_{1-x}Co_xCl_4$, and we use our results to analyze the environments of the $N(CH_3)_4$ ions. The results also enable us to compare the structural properties of $[N(CH_3)_4]_2ZnCl_4$ and $[N(CH_3)_4]_2CoCl_4$: we examined the effect of substituting Zn ions with Co ions in $[N(CH_3)_4]_2ZnCl_4$, with a focus on the effects of Co impurities on structural geometry and relaxation mechanisms.

2. Crystal structure


 $[N(CH_3)_4]_2ZnCl_4$ in its highest-temperature phase, phase I, has an orthorhombic structure with space group *Pmcn*. Its orthorhombic lattice constants are a = 8.946 Å, b = 15.515 Å, and c = 12.268 Å [10,49]. In phase I, one unit cell contains four formula units comprising two nonequivalent types of tetramethylammonium ions, hereafter abbreviated as "a-N(CH_3)₄" and "b-N(CH_3)₄", and one type of the $ZnCl_4^2$ ion [10]. A projection of the structure in the normal phase I viewed from the c-direction is shown in Fig. 1. In phase I, the two stable configurations of the ZnCl_4 ion and the a-N(CH_3)₄ ion are related to each other by a rotation about an axis passing through the center of mass, which lies almost parallel to the c-direction. In b-N(CH_3)₄, this axis lies almost parallel to the b-direction. The ZnCl_4 ion and the a-N(CH_3)₄ ion are positioned in a strongly correlated manner, whereas the b-N(CH_3)₄ ion shows less correlation with other types of ions.

The highest-temperature phase of $[N(CH_3)_4]_2CoCl_4$, phase I, has an orthorhombic structure with space group *Pmcn* and the lattice constants a = 9.001 Å, b = 15.539 Å, and c = 12.276 Å. Phase I comprises nonequivalent tetramethylammonium ions and one type of $CoCl_4^{2-}$ ion [10]. In the case of ferroelectric–ferroelastic phase transition, the loss of symmetry during transition from the *Pnma* parent phase to the *P2*₁/*n* ferroelastic phase, together with the multiplication of the unit cell by a factor of 3 in the a-direction, allows for prediction of the ferroelastic twin domains described by Sapriel [50]. The degree of deformation of the b-N(CH₃)₄ ion is larger than that of the a-N(CH₃)₄ ion, and it increases in the ferroelectric phase.

3. Experimental method

Single crystals of the form $[N(CH_3)_4]_2Zn_{1-x}Co_xCl_4$ (x = 0, 0.5, 0.7, 0.9, and 1) were grown at room temperature through the slow evaporation of an aqueous solution containing $ZnCl_2$, $CoCl_2$, and $N(CH_3)_4Cl$ in stoichiometric proportions. $[N(CH_3)_4]_2Zn_{1-x} Co_xCl_4$ single crystals varied in color according to the amount of Co^{2+} ions, as shown in Fig. 2.

Solid-state NMR experiments were performed using a Bruker DSX 400 FT NMR spectrometer at the Korea Basic Science Institute Seoul Western Center. ¹H MAS NMR and ¹³C CP/MAS NMR experiments were performed at Larmor frequencies of 400.12 MHz and 100.61 MHz, respectively. Samples in powder form were placed into the 4-mm CP/MAS probe. The MAS rate was set to 10 kHz and 7 kHz for ¹H MAS and ¹³C CP/MAS, respectively, to minimize spinning

Fig. 1. Crystal structure of $[N(CH_3)_4]_2ZnCl_4$ in phase I. Two inequivalent kinds of tetramethylammonium ions, a-N(CH_3)_4 and b-N(CH_3)_4, and one kind of $ZnCl_4^{2-}$ ion. The hydrogen atoms of the CH₃ ion are not shown.

Download English Version:

https://daneshyari.com/en/article/1520881

Download Persian Version:

https://daneshyari.com/article/1520881

Daneshyari.com