Contents lists available at ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Impact of particle agglomeration in cyclones

Julio Paiva^a, Romualdo Salcedo^{a,b,*}, Paulo Araujo^c

^a LEPAE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal ^b ACS - Advanced Cyclone Systems, SA, Centro de Empresas NET - Edificio PROMONET, Rua de Salazares, 842, 4149-002 Porto, Portugal ^c CUF - Químicos Industriais, Quinta da Industria, 3860-680 Estarreja, Portugal

ARTICLE INFO

Article history: Received 24 February 2010 Received in revised form 26 May 2010 Accepted 19 June 2010

Keywords: Optimized cyclones Turbulent dispersion Particle agglomeration

ABSTRACT

The purpose of this work is to build a model to predict in a more realistic way the collection efficiency of gas cyclones, and in particular, of numerically optimized cyclones, that show very high collection efficiencies for sub-micrometer particles. These cyclones can be coupled to recirculation systems for further improving the collection efficiencies of these fine particles.

As a first approach, in this paper a reverse-flow gas-cyclone without recirculation was studied. The model starts by solving the particle trajectory in a predetermined flow field inside the cyclone on which turbulence is superimposed by adding random fluctuating components. By employing a fixed set of parameters, it determines if a collision or an agglomeration occurs. In case of agglomeration, the initial particles will have a dynamic behavior inside the cyclone as an newly formed agglomerate, thus having a different collection efficiency from that of the original particles. In fact, the observed efficiency will increase above theoretical predictions for un-agglomerated particles and this can be observed in various experimental results.

The hypothesis of particle agglomeration within the cyclone turbulent flow seems a sound justification for the higher than predicted collection efficiencies observed for smaller particles in a gas-cyclone, being expectable with recirculation that this effect will become even more significant.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Collection efficiency models currently developed for gas cyclones, such as the Mothes and Löffer's model [1], can predict with good accuracy the collection efficiency of particles with diameters above about $2-3 \,\mu$ m.

Experimentally, several authors have observed at laboratory, pilot and industrial-scales [2–10] that cyclone systems can have much higher collection for fine particles (below about 3 μ m) than predicted by classical models, viz. grade-efficiency curves may show a minimum in collection at an intermediate particle size (ranging from about 0.8 to 2 μ m). Since these hook-like curves do not always occur [2,7], the phenomenon, whatever its cause, is probably dependent on the physical properties of the powders, on the gas flow field inside the cyclone or on both.

Muschelknautz's model [7,11–13] predicts, at high solid loadings, a fairly constant value of collection efficiency for the smaller

E-mail address: rsalcedo@fe.up.pt (R. Salcedo).

particles, since it is postulated that a portion of the feed is separated unclassified, but it does not predict the abnormal high collection for fine particles observed for dilute systems at low or moderate loadings (feed concentrations $1-10 \, g_{powder}/m_{gas}^3$).

This work proposes that this abnormal behavior for fine particles is attributed to agglomeration within the cyclone turbulent flow field, as initially postulated by Mothes and Löffler [14], much as it happens in recirculating fluidized beds [15,16]. This phenomenon is modeled by considering the particles' trajectories inside the cyclone and the probability of interparticle collisions. If some of these collisions result in effective particle agglomeration, one of the direct implications is that the particle size distribution actually processed by the gas cyclone differs from the feed size distribution, increasing the overall collection efficiency for these systems.

Upon agglomeration of fine particles by larger ones, the smaller particles will be captured as much larger particles, viz. with much higher collection efficiency than that predicted by any of the currently available models. If the cyclone is highly efficient above about $2-3 \,\mu$ m, i.e., above 90-95% collection, as it indeed happens with high efficiency cyclone systems, and especially with recirculation systems and numerically optimized cyclones [2,9], then the smaller particles will also be collected with these high efficiencies, and this could explain the minima observed in many grade-efficiency curves. As a direct consequence, the more efficient the cyclone

Abbreviations: PACyc, particle agglomeration in cyclones; PSD, particle size distribuition.

^{*} Corresponding author at: LEPAE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal.

^{1385-8947/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cej.2010.06.025

Nomenclature

а	gas entry height (m)
A	Hamaker constant (I)
h	gas entry width (m)
C	mass concentration (kg m ^{-3})
CD	drag coefficient
CT	Lagrange constant
D	cyclone diameter (m)
Dnew	new agglomerate diameter (m)
d_n	particle diameter (m)
d_{ni}^{P}	diameter of particle $i(m)$
d_{trun}	cut-off diameter class
D_A	diameter of particle A (m)
D_B	diameter of particle <i>B</i> (m)
$\overline{D_b}$	particle exit diameter (m)
D_C	diameter of particle C (m)
D _e	gas exit diameter (m)
D _{final,i}	is the last of the final diameters that belongs to class
2	i
D _{initial,i}	is the first of the final diameters that belongs to class \boldsymbol{i}
Dr	radial turbulent dispersion
е	energetic restitution coefficient
f	friction factor
$f(\Delta r)_i$	longitudinal correlation coefficient in direction <i>i</i>
f_c	collision frequency combining turbulent inertia and
_	differential settling
f_c^{Brown}	collision frequency only by Brownian difusion
$f_{n,i}$	fraction of class <i>i</i> in non-cumulative number distri-
	bution
$f_{w,i}$	fraction of class <i>i</i> in non-cumulative mass distribu-
	tion
<i>g</i> i	acceleration in direction $i (m s^{-2})$
$g(\Lambda r)_i$	tranverse correlation coefficient in direction i
8(-,)	
H	cyclone height (m)
H H H _c	cyclone height (m) cyclone cylinder diameter (m)
H_c h_z	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) ctructure with all identification of <i>i</i> particles that
H H _c h _z INFO	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that chifted to <i>i</i> class
H H_c h_z INFO	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulant kinetic anergy (m ² c ⁻²)
H H _c h _z INFO k	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Poltzmann constant (W^{-1})
H H_c h_z INFO k k_B K	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter
H H _c h _z INFO k k _B K	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle incide the gas cyclone (kg)
H H_c h_z INFO k k_B K m_{total} N	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions
H H_c h_z INFO k k_B K m_{total} N_c	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes
H H_{c} h_{z} $INFO$ k k_{B} K m_{total} N_{c} $N_{classes}$ N_{c}	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a
H H_c h_z $INFO$ k k_B K M_{total} N_c $N_{classes}$ N_{final}	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class
H H_c h_z $INFO$ k k_B K M_{total} N_c $N_{classes}$ N_{final} R	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that
$H = H_{c}$ H_{c} h_{z} $INFO$ k k_{B} K M_{total} N_{c} $N_{classes}$ N_{final} n_{ij}	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>i</i>
$H = H_{c}$ H_{c} h_{z} $INFO$ k k_{B} K M_{total} N_{c} $N_{classes}$ N_{final} n_{ij} $D_{ciassed}$	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of number of class <i>i</i> injected in control vol-
$R_{L} = R_{L}$ H_{C} h_{z} $INFO$ k k_{B} K m_{total} N_{c} $N_{classes}$ N_{final} n_{ij} $n_{injected,i}$	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume
H H_c h_z INFO k k_B K m_{total} N_c $N_{classes}$ N_{final} n_{ij} $n_{injected,i}$	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a
$R_{L} = R_{L}$ H_{c} h_{z} INFO k k_{B} K m_{total} N_{c} $N_{classes}$ N_{final} n_{ij} $n_{injected,i}$	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class
H H H_c h_z INFO k k_B K m_{total} N_c $N_{classes}$ N_{final} $n_{i,j}$ $n_{injected,i}$ $N_{initial}$	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class number of particles in proportion in class <i>i</i>
R_{i} R_{i	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class number of particles in proportion in class <i>i</i> number of particles in proportion in class <i>i</i> number of particles in class <i>i</i>
H H H_c h_z INFO k k_B K M_{total} N_c $N_{classes}$ N_{final} $n_{i,j}$ $n_{injected,i}$ $N_{initial}$ $n_{original,i}$ $n_{p,i}$ $n_{crast i}$	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class number of particles in proportion in class <i>i</i> number of particles in class <i>i</i> actual number of particles in class <i>i</i>
H H H _c h _z INFO k k K B K Mtotal Nc Nclasses Nfinal n _{ij} n _{injected,i} N _{initial} n _{original,i} n _{p,i} n _{real,i} N _{stices}	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class number of particles in proportion in class <i>i</i> number of particles in class <i>i</i> actual number of particles in class <i>i</i> number of particles in class <i>i</i> number of slices
H H_c h_z INFO k k_B K M_{total} N_c $N_{classes}$ N_{final} $n_{i,j}$ $n_{injected,i}$ $N_{initial}$ $n_{original,i}$ $n_{p,i}$ $n_{real,i}$ N_{slices} N(0, 1)	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class number of particles in proportion in class <i>i</i> number of particles in class <i>i</i> actual number of particles in class <i>i</i> number of slices random number (standard normal distribution)
$H = H_{c}$ H_{c} h_{z} $INFO$ k k_{B} K M_{total} N_{c} $N_{classes}$ N_{final} $n_{i,j}$ $n_{injected,i}$ $N_{initial}$ $n_{original,i}$ $n_{p,i}$ $n_{real,i}$ N_{slices} $N(0, 1)$ $P_{collision}$	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class number of particles in proportion in class <i>i</i> number of particles in class <i>i</i> actual number of particles in class <i>i</i> number of slices random number (standard normal distribution) collision probability
$R_{c} = r_{i}$ H_{c} h_{z} $INFO$ k k_{B} K M_{total} N_{c} $N_{classes}$ N_{final} $n_{i,j}$ $n_{injected,i}$ $N_{initial}$ $n_{original,i}$ $n_{p,i}$ $n_{real,i}$ N_{slices} $N(0, 1)$ $P_{collision}$ P_{nl}	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class number of particles in proportion in class <i>i</i> number of particles in class <i>i</i> actual number of particles in class <i>i</i> number of slices random number (standard normal distribution) collision probability material limiting contact (Pa)
$\begin{array}{l} R(J_{c}) \\ R(J_$	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class number of particles in proportion in class <i>i</i> number of particles in class <i>i</i> actual number of particles in class <i>i</i> number of slices random number (standard normal distribution) collision probability material limiting contact (Pa) radial particle Peclet number
$R_{c} = R_{c}$ H_{c} h_{z} $INFO$ k k_{B} K m_{total} N_{c} $N_{classes}$ N_{final} $n_{i,j}$ $n_{injected,i}$ $N_{initial}$ $n_{original,i}$ $n_{p,i}$ $n_{real,i}$ N_{slices} $N(0, 1)$ $P_{collision}$ P_{pl} Pe_{p} r	cyclone height (m) cyclone cylinder diameter (m) equivalent height of cylinder gas cyclone (m) structure with all identification of <i>i</i> particles that shifted to <i>j</i> class turbulent kinetic energy (m ² s ⁻²) Boltzmann constant (J K ⁻¹) angular momentum parameter total mass particle inside the gas cyclone (kg) total number of collisions total number of classes last of the final number of diameters belonging to a class number of particles initially belonging to class <i>i</i> that shifted to class <i>j</i> number of particles of class <i>i</i> injected in control vol- ume first of the final number of diameters belonging to a class number of particles in proportion in class <i>i</i> number of particles in class <i>i</i> actual number of particles in class <i>i</i> number of slices random number (standard normal distribution) collision probability material limiting contact (Pa) radial particle Peclet number radial coordinate (m)

$D(\Lambda r)$	Eulerian part of turbulant correlation function
$R_{E,i}(\Delta T)$	Eulerian part of turbulent correlation function
$R_{p,i}(\Delta t, \Delta$	Δr) turbulent correlation function in direction i
$R_L(\Delta t)$	Lagrangian part of turbulent correlation function
Rep	particle Reynolds number
Re ^R _p	radial particle Reynolds number
ss	distance of the gas exit to the top of the cyclone (m)
t	instant of time (s)
Tr	Lagrangian integral time scale (s)
-L 11 J	downward gas velocity inside the cyclone (m s ^{-1})
и _а 11а	fluid velocity component in direction $i(m s^{-1})$
ufluid,i	fluid velocity component in direction <i>i</i> in time step
^u fluid,i	nuld velocity component in direction i in time step
m + 1	$n(m s^{-1})$
$u_{fluid,i}^{n+1}$	fluid velocity component in direction <i>i</i> in time step
<i>j</i> ,.	$n+1 (m s^{-1})$
u^r	radial fluid velocity proposed by Mothes and Löffler
fluid	(
t	
u ^c _{fluid}	tangential fluid velocity proposed by Mothes and
	Löffler (m s ^{-1})
$u_{fluid}^{t,*}$	tangential fluid velocity after vena contracta effect
jiuiu	$(m s^{-1})$
11 ^N	velocity component in i direction of particle M
$u_{p,i}$	velocity component in <i>i</i> direction of particle N
	$(m s^{-1})$
u _r	radial fluid velocity (m s ⁻¹)
<i>U</i> (0, 1)	random number (uniform distribution)
<i>v_{cr}</i>	critical velocity (m s ⁻¹)
V _{control}	control volume's volume (m ³)
V _{cvclone}	cyclone volume (m ³)
V _{fluid}	total fluid's volume in the control volume (m^3)
Vnarticles	total particle's volume in the control volume (m^3)
Vnarticles in	v_{iacted} volume of the injected particles (m ³)
· DULLUES.0	
x ^N	position of particle N in <i>i</i> direction (m)
$x_{p,i}^{\hat{N}}$	position of particle <i>N</i> in <i>i</i> direction (m)
$x_{p,i}^{\hat{N}}$ z_0	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m)
$x_{p,i}^{N}$ z_{0} α ρ	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes
$\begin{array}{c} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ A \end{array}$	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter
$x_{p,i}^{N}$ z_{0} α β Δr	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m)
$ \begin{array}{c} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s)
$ \begin{array}{c} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \epsilon \\ \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad)
$ \begin{array}{l} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i
$ \begin{array}{l} x_{p,i}^{\hat{N}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler
$ \begin{array}{l} x_{p,i}^{\hat{N}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a
$ \begin{array}{l} x_{p,i}^{\tilde{N}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i>
$ \begin{array}{l} x_{p,i}^{\tilde{N}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i>
$ \begin{array}{l} x_{p,i}^{\tilde{N}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \eta_{i}^{slice} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice
$ \begin{array}{l} x_{p,i}^{\tilde{N}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice,*} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a
$ \begin{array}{l} x_{p,i}^{\bar{h}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{slice} \\ \eta_{j}^{slice,*} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>i</i>
$ \begin{array}{l} x_{p,i}^{\bar{h}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \eta_{i}^{slice} \\ \eta_{j}^{slice,*} \\ \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (log $m^{-1} c^{-1}$)
$ \begin{array}{c} x_{p,i}^{N} \\ z_{0} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \eta_{i}^{slice} \\ \eta_{j}^{slice,*} \\ \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹)
$ \begin{array}{c} x_{p,i}^{N} \\ z_{0} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \eta_{i}^{slice} \\ \eta_{j}^{slice,*} \\ \mu \\ \phi \\ \rho \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad)
$ \begin{array}{c} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice,*} \\ \eta_{j}^{slice,*} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³)
$ \begin{array}{l} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice} \\ \eta_{j}^{slice,*} \\ \eta_{\sigma_{F}}^{slice,*} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle
$ \begin{array}{l} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice,*} \\ \eta_{j}^{slice,*} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹)
$ \begin{aligned} & x_{p,i}^{N} \\ & z_{0} \\ & \alpha \\ & \beta \\ & \Delta r \\ & \Delta t \\ & \epsilon \\ & \eta_{i}^{final} \\ & \eta_{i}^{final,*} \\ & \eta_{i}^{slice} \\ & \eta_{j}^{slice,*} \\ & \mu \\ & \phi \\ & \sigma_{F} \\ & \tau \end{aligned} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s)
$ \begin{array}{l} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{slice} \\ \eta_{j}^{slice,*} \\ \eta_{j}^{slice,*} \\ \mu \\ \phi \\ \rho \\ \sigma_{F} \\ \tau \\ \varepsilon \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s) dissipation velocity of turbulent kinetic energy
$ \begin{array}{l} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice,*} \\ \eta_{j}^{slice,*} \\ \mu \\ \phi \\ \rho \\ \sigma_{F} \\ \tau \\ \varepsilon \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s) dissipation velocity of turbulent kinetic energy (m ² s ⁻³)
$\begin{array}{c} x_{p,i}^{\bar{N}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice,*} \\ \eta_{j}^{slice,*} \\ \mu \\ \phi \\ \rho \\ \sigma_{F} \\ \tau \\ \varepsilon \\ \overline{u_{fluid}} \end{array}$	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s) dissipation velocity of turbulent kinetic energy (m ² s ⁻³) fluid velocity (m s ⁻¹)
$\begin{array}{c} x_{p,i}^{N} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice,*} \\ \eta_{j}^{slice,*} \\ \mu \\ \phi \\ \rho \\ \sigma_{F} \\ \tau \\ \varepsilon \\ \overline{u_{fluid}} \\ \overline{u_{new}} \end{array}$	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s) dissipation velocity of turbulent kinetic energy (m ² s ⁻³) fluid velocity (m s ⁻¹)
$ \begin{array}{c} x_{p,i}^{N} \\ z_{0} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice,*} \\ \eta_{j}^{slice,*} \\ \eta_{j}^{slice,*} \\ \tau \\ \varepsilon \\ \overline{u_{fluid}} \\ \overline{u_{new}} \\ \overline{u_{n}^{N}} \\ \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s) dissipation velocity of turbulent kinetic energy (m ² s ⁻³) fluid velocity (m s ⁻¹) velocity of particle <i>N</i> (m s ⁻¹)
$ \begin{array}{c} x_{p,i}^{\bar{N}} \\ z_{0} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice,*} \\ \eta_{j}^{slice,*} \\ \mu \\ \phi \\ \rho \\ \sigma_{F} \\ \tau \\ \varepsilon \\ \overline{u_{fluid}} \\ \overline{u_{new}} \\ \overline{u_{p1}^{N}} \\ \overline{u_{p1}} \\ \eta_{j}^{slice,*} \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s) dissipation velocity of turbulent kinetic energy (m ² s ⁻³) fluid velocity (m s ⁻¹) velocity of particle <i>N</i> (m s ⁻¹) particle 1 velocity after collision with no agglomer-
$ \begin{array}{c} x_{p,i}^{\bar{N}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{final,*} \\ \eta_{i}^{slice} \\ \eta_{i}^{slice,*} \\ \eta_{i}^{slice,*} \\ \eta_{i}^{slice,*} \\ \tau_{\varepsilon} \\ \overline{u_{fluid}} \\ \overline{u_{new}} \\ \overline{u_{p}} \\ \overline{u_{p1}} \\ \overline{u_{p1}} \\ \overline{u_{p1}} \\ \end{array} $	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s) dissipation velocity of turbulent kinetic energy (m ² s ⁻³) fluid velocity (m s ⁻¹) velocity of particle <i>N</i> (m s ⁻¹) particle 1 velocity after collision with no agglomer- ation (m s ⁻¹)
$x_{p,i}^{N}$ z_{0} α β Δr Δt ϵ η_{i}^{final} η_{i}^{slice} $\eta_{i}^{slice,*}$ μ ϕ ρ σ_{F} τ ε $\overrightarrow{u_{fluid}}$ $\overrightarrow{u_{new}}$ $\overrightarrow{u_{p}}$ $\overrightarrow{u_{p1}}$ $\overrightarrow{u_{p2}}$	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s) dissipation velocity of turbulent kinetic energy (m ² s ⁻³) fluid velocity (m s ⁻¹) velocity of particle <i>N</i> (m s ⁻¹) particle 1 velocity after collision with no agglomer- ation (m s ⁻¹) particle 2 velocity after collision with no agglomer-
$ \begin{array}{c} x_{p,i}^{\bar{N}} \\ z_{0} \\ \alpha \\ \beta \\ \Delta r \\ \Delta t \\ \epsilon \\ \eta_{i}^{final} \\ \eta_{i}^{slice} \\ \eta_{i}$	position of particle <i>N</i> in <i>i</i> direction (m) contact distance (m) ratio between fluid and particle volumes entry parameter displacement (m) time step (s) cyclone cone angle (rad) collection efficiency of particles belonging to class i proposed by Mothes and Löffler final collection efficiency after agglomeration of a particle belonging to class <i>i</i> collection efficiency of particles belonging to class <i>i</i> in each slice final collection efficiency after agglomeration of a particle belonging to class <i>j</i> per slice fluid viscosity (kg m ⁻¹ s ⁻¹) collision angle (rad) specific gravity of the fluid (kg m ⁻³) mean fluctuation of fluid velocity at the particle position (m s ⁻¹) mean residence time (s) dissipation velocity of turbulent kinetic energy (m ² s ⁻³) fluid velocity (m s ⁻¹) velocity of particle <i>N</i> (m s ⁻¹) particle 1 velocity after collision with no agglomer- ation (m s ⁻¹)

Download English Version:

https://daneshyari.com/en/article/152173

Download Persian Version:

https://daneshyari.com/article/152173

Daneshyari.com