FISEVIER

Contents lists available at ScienceDirect

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

A preliminary investigation into the structure, solubility and biocompatibility of solgel SiO₂—CaO—Ga₂O₃ glass-ceramics

A.W. Wren ^{a, *}, M.C. Jones ^a, S.T. Misture ^a, A. Coughlan ^b, N.L. Keenan ^a, M.R. Towler ^c, M.M. Hall ^a

- ^a Inamori School of Engineering, Alfred University, Alfred, NY 14802, USA
- ^b School of Materials Engineering, Purdue University, West Lafayette, IN, USA
- ^c Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, Canada

HIGHLIGHTS

- A solgel derived glass-ceramic series was synthesized with 5 mol% Ga₂O₃ doped for the SiO₂ and CaO.
- Characterization included X-ray diffraction, thermal analysis and particle analysis methods,
- Materials released gallium (Ga), calcium (Ca), silica (Si) and caused an increase in pH over time.
- Antibacterial effects were observed when tested in E. coli and S. epidermidis.
- No significant reduction in cell viability was observed with material ionic dissolution species.

ARTICLE INFO

Article history: Received 26 February 2014 Received in revised form 1 August 2014 Accepted 3 August 2014 Available online 29 August 2014

Keywords: Biomaterials Ceramics Glasses Sol-gel growth Corrosion

ABSTRACT

The proposed study aims to synthesize gallium (Ga^{3+}) containing glass-ceramics via the solgel method and determine their solubility and biocompatibility. Three solgel derived glass-ceramics, two containing Ga^{3+} were synthesized by substituting 5 mol% Ga^{3+} for both Ca^{2+} (Si-65) and Si^{4+} (Si-70) and were compared to a Ga^{3+} free control (control). Glass transition temperatures (T_g) ranged from 641 to 660 °C for all materials with particle sizes ranging between 1.5 and 2.5 μ m. Surface area analysis ranged from 45 to 55 m² g⁻¹ and any changes in pH were determined over 0–14 days. Ga^{3+} ion release from Si-65 peaked at 433 mg L⁻¹ after 7 days, and Si-70 peaked at 601 mg L⁻¹ after 1 day. Both calcium (Ca^{2+}) and silica (Si^{4+}) were also released from each material. Antibacterial testing against E. coli and S. epidermidis revealed both bactericidal (maximum inhibition zone of 2.5 \pm 0.3 mm) and bacteriostatic effects. The control material exhibited inhibition zones in both bacteria while bacteriostatic properties were found predominantly against E. coli with Si-65 and Si-70. Cytocompatibility testing was conducted in L929 mouse fibroblasts and determined no significant reduction in cell viability with respect to the control, with minimal, non-significant reductions for Si-65 and Si-70.

Published by Elsevier B.V.

1. Introduction

Since the invention of Bioglass[®], bioactive glasses, have been investigated for a range of orthopedic applications as they exhibit excellent osteoconductive properties [1,2]. Controlled release of ionic dissolution products, in particular, concentrations of soluble silica (Si⁴⁺) and calcium (Ca²⁺) are known to be essential to the bioactive process [1]. This has led to investigators to synthesize

novel bioactive glasses to improve bioactivity and/or antibacterial properties [3,4]. Employing solgel processing can lead to positive characteristics over melt quenching route, including lower processing temperatures, uniform phase distribution, new crystalline/non-crystalline materials [5], high surface area powders [6,7] and greater homogeneity [6] which yields glasses which cannot be easily prepared by melt quenching [7,8]. Studies on 70SiO₂—30CaO solgel glasses has previously been described by Vallet-Regi [9,10] et al. and Saravanapavan *et al* [11], which focused primarily on the synthesis and incubation of these glasses in Simulated Body Fluid (SBF), which presented positive signs of bioactivity [9–12].

^{*} Corresponding author. Tel.: +1 607 871 2183; fax: +1 607 871 2353. E-mail address: wren@alfred.edu (A.W. Wren).

The addition of gallium (Ga³⁺) to silicate glasses through solgel processing can be used to address problematic areas in orthopedics. Previous studies by Shruti et al. [13] on GaO₂ doped SiO₂-CaO-P₂O₅ solgel glasses presented positive surface reactions in SBF [13], whereas Bolis et al. reports that GaO₂ reduces apatite formation [14]. However, Ga³⁺ can also be incorporated to eradicate tumor cells and reducing the risk of infection post-surgery. Antibiotic overuse can promote multi drug-resistant strains of bacteria [15–17], such as MRSA (Methicillin Resistant S. aureus) which has resulted in the need for antibiotic free materials for treating persistent infection such as antibacterial ions (Zn²⁺, Ag⁺) [18–21] and compounds [22,23]. Ga³⁺ is an element that presents multitherapeutic potential when incorporated into medical materials and although there is no specific biological role for Ga³⁺ in humans, it has been reported to present beneficial therapeutic effects when incorporated into materials used to treat disease/infection in humans. These disorders range from accelerated bone resorption, autoimmune disease and allograft rejection, certain cancers and infectious disease [24] in addition to treating hypercalcemia of malignancy and Pagets disease [24]. Ga³⁺ has also been used to suppress osteolysis and bone pain associated with multiple myeloma and bone metastases, in addition to being investigated as a treatment for osteoporosis [24]. Ga³⁺ physiological activity is cited as being due to its atomic similarities (electric charge, ionic diameter and coordination number [25]) with iron (Fe³⁺), in particular, regarding protein and chelate binding [24]. Biochemically, the most important difference is that Ga³⁺ is irreducible under physiological conditions, whereas Fe³⁺ can be readily reduced to Fe²⁺. This prevents Ga³⁺ from entering Fe²⁺ binding molecules and prevents it from participating in redox reactions and is known to be transported through blood plasma by the iron-transport protein transferrin. Ga³⁺ has a strong affinity for certain tissues such as bone and many tumors and accumulation of Ga³⁺ in tumors (lymphomas) is associated with large amounts of transferrin receptors (TF). However, bone tissue does not generally contain high concentrations of Fe³⁺ binding proteins and the mechanism of skeletal Ga³⁺ accumulation remains relatively unknown. Ga³⁺ accumulation in bone tissue has led to treating disorders such as multiple myeloma [24] and treating infection as Ga³⁺ is known to be able to disrupt bacterial metabolism [26–28] in species such as M. tuberculosis and M. avium, S. aureus, E. coli, P. aeruginosa, MRSA and C. difficile [26,29–31], which is also related to Ga³⁺ ability to enter microbes through their iron transport mechanisms which disrupts iron metabolism and DNA/protein synthesis [24].

Regarding this study, a CaO—Ga₂O₃—SiO₂ glass-ceramic series was prepared using the solgel processing. The effect of each materials structure and solubility was evaluated against common bacterium such as *E. coli* and *S. epidermidis*, in addition to a standard mammalian cell line (L929 mouse Fibroblasts) to evaluate any potential cytotoxicity.

2. Materials & methods

2.1. Glass-ceramic synthesis

2.1.1. Materials

Glass-ceramic samples were prepared using a solgel method based upon that described by Saravanapavan and Hench [11]. The following compounds were used to create $CaO-SiO_2$ and $CaO-Ga_2O_3-SiO_2$ gel glass-ceramics: TEOS ($Si(OC_2H_5)_4$), nitric acid (HNO₃), calcium nitrate tetrahydrate ($Ca(NO_3)_2 \cdot 4H_2O$), gallium nitrate hexahydrate ($Ga(NO_3)_3 \cdot 6H_2O$) (reagents, Fisher Scientific), and deionized (DI) water, according to Table 1 compositions. As TEOS needs an acid or base catalyst, the 2 N nitric acid (HNO₃) is added during sol preparation. The amount of HNO₃ is determined

Table 1 Composition of glass series (Mol. %).

	Composition			
		SiO ₂	CaO	Ga ₂ O ₃
Control	0% Doped	70	30	0
Si-65	5% SiO ₂ Doped	65	30	5
Si-70	5% CaO Doped	70	25	5

according to the following ratios: a molar ratio of $H_2O/TEOS$ is 12:1 and a volume ratio of H_2O/HNO_3 is 6:1 [11].

2.1.2. Gel synthesis

The 2 N HNO₃ and the deionized water were stirred together in a Teflon beaker at room temperature for 5 min. $Si(OC_2H_5)_4$ was added over a 30-min period and the mixture was stirred for an additional 30 min to ensure homogeneity and complete hydrolysis. $Ca(NO_3)_2 \cdot 4H_2O$ and, where appropriate, $Ga(NO_3)_3 \cdot 6H_2O$, were then added and allowed to dissolve. $Ga(NO_3)_3 \cdot 6H_2O$ was added over a 5-min period to prevent rapid gelation, which reduces homogeneity. The sol was stirred for 1 h, followed by casting into sealed 38 mm polypropylene containers which had three 1 mm \emptyset holes in their tops to allow release of gases that evolved during drying (Fig. 1).

2.1.3. Solgel glass synthesis

Wet gels were dried and aged simultaneously in a programmable oven at $60\,^{\circ}\text{C}$ for $72\,\text{h}$. Aging and drying ensure complete gelation and solidification. Each material was stabilized in Al_2O_3 crucibles in a programmable oven according to the schedule in Table 2 [11]. X-ray diffraction was conducted on each glass (*Control*, Si-65 and Si-70) prior to stabilization and each was determined to be amorphous (data not presented).

2.2. Sample preparation

Each glass-ceramic was ground to a fine powder using a gyromill (Glen Creston, UK) for initial characterization. For solubility and antibacterial testing, each material was tested in two forms, powder form and disc form, to determine if the increased dissolution of the individual particles in the powder form increases the antibacterial effect. Samples were produced and evaluated as follows:

- Powder form (1 m² surface area, n = 3)
- Solid pressed disc (4 mmØ \times 1.3 mm, 1 m² surface area, n = 3)

To form discs, molds 4 mm Ø were filled with powder and pressed to form discs (1.3 mm thick). For ion release and pH

Fig. 1. Solgel glasses a.) Control, b.) Si-65 and c.) Si-70.

Download English Version:

https://daneshyari.com/en/article/1521759

Download Persian Version:

https://daneshyari.com/article/1521759

<u>Daneshyari.com</u>