[Materials Chemistry and Physics 144 \(2014\) 155](http://dx.doi.org/10.1016/j.matchemphys.2013.12.035)-[161](http://dx.doi.org/10.1016/j.matchemphys.2013.12.035)

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

Effect of thermal treatment on conductometric response of hydrogen gas sensors integrated with HCl-doped polyaniline nanofibers

CHE

Pen-Cheng Wang ^{a,}*, Yaping Dan ^b, Li-Hung Liu ^a

a Department of Engineering and System Science, National Tsing Hua University, 101 Section 2 Kuang-Fu Road, Hsinchu 30013, Taiwan ^b Department of Electrical and Systems Engineering, University of Pennsylvania, 200 South 33rd Street, Philadelphia, PA 19104, USA

Observation of the effect of annealing on H2 sensors based on HCl-doped PANI.

Revelation of crosslinking and partial carbonization of HCl-doped PANI upon annealing.

• Analysis of the influence of water and PANI's dopant on H_2 sorption kinetics.

Article history: Received 3 May 2013 Received in revised form 27 November 2013 Accepted 29 December 2013

Keywords: Polymers Nanostructures Heat treatment Electrical properties

ABSTRACT

In this work, we investigated the effect of thermal treatments on the transduction of HCl-doped polyaniline (PANI) nanofibers integrated in conductometric devices upon exposure to 1% H₂ (carried by N₂). After drying in N₂ at ~25 °C for 12 h, our devices showed a ~10% decrease in electrical resistance upon exposure to 1% H₂. However, devices subject to 12-h drying in N₂ at \sim 25 °C followed by further thermal treatments in N₂ at 100 °C, 164 °C or 200 °C for 30 min showed different transduction behaviors. The devices subject to thermal treatments at 100 °C and 164 °C showed a \sim 7% decrease and <0.5% variation in electrical resistance, respectively. More interestingly, the device subject to the thermal treatment at 200 °C showed a transduction behavior with obvious opposite polarity, i.e. a \sim 5% increase in electrical resistance upon exposure to 1% H2. Further analysis indicated that the observed results were related to the thermal treatments which caused HCl-doped PANI nanofibers to undergo (i) water desorption, (ii) crosslinking and/or (iii) partial carbonization.

2014 Elsevier B.V. All rights reserved.

1. Introduction

Conducting polymers are a class of organic materials which possess the optical, electrical, electronic and magnetic properties of metals, while the processability and mechanical properties of conventional polymers $[1-12]$ $[1-12]$ $[1-12]$. Conducting polymers can be synthesized by electrochemical polymerization or oxidative chemical polymerization methods [\[1\]](#page--1-0). With the adjustment in preparative conditions, conducting polymers with different morphological features can be produced $[13-19]$ $[13-19]$. Conducting polymers have been widely used for many electrical and optoelectronic applications, such as polymeric electrodes $[20-24]$ $[20-24]$, displays $[17,25-27]$ $[17,25-27]$ $[17,25-27]$, fuel cells $[28-31]$ $[28-31]$, light-emitting diodes $[32-36]$ $[32-36]$ $[32-36]$ and organic solar cells [\[37](#page--1-0)-[40\].](#page--1-0) As electrical properties of conducting polymers can vary with chemical contexts, conducting polymers can also be used for gas sensing $[41-45]$ $[41-45]$. To increase the sensitivity of gas sensors based

0254-0584/\$ - see front matter \odot 2014 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.matchemphys.2013.12.035>

on conducting polymers, the active sensing component with a greater surface area (such as a porous network made up of nanofibers of a conducting polymer) can be used, instead of the same conducting polymer's bulk solid thin film [\[46,47\]](#page--1-0).

Due to its ease of synthesis, polyaniline (PANI) becomes one of the most studied nitrogen-containing conducting polymers [\[41\].](#page--1-0) PANI can undergo reversible protonic doping to change conductivity by up to 10 orders of magnitude $[1]$. However, as the polymerization of aniline is pH-sensitive, caution should be taken to maintain appropriate low pH in the reaction media when the synthesis of the "classical" conductive PANI is desired [\[48\]](#page--1-0). Without secondary growth, PANI synthesized by oxidative chemical polymerization under sufficiently low pH conditions basically adopts the nanofiber structure as its intrinsic morphology [\[19\]](#page--1-0).

Recently, some PANI-based polymers have been investigated for hydrogen sensing and hydrogen storage applications [\[49,50\]](#page--1-0). In general, the studies on hydrogen sensing show that conductometric sensors based on doped PANI can respond to hydrogen gas [\[47,51,52\]](#page--1-0), while the studies on hydrogen storage show that the uptake of hydrogen by PANI varies from 0 to 10 wt% $[53-59]$ $[53-59]$. It is

Corresponding author. Tel./fax: $+886$ 3 574 2372, $+886$ 3 572 0724. E-mail address: wangpc@ess.nthu.edu.tw (P.-C. Wang).

believed that the discrepancy in hydrogen storage could be related to the ambiguous and somewhat inconsistent materials processing procedures used, as the properties of PANI-based polymers (e.g. oxidation states, doping levels etc) can be affected by many subtle processing variables [\[1\]](#page--1-0). Thus, it is of particular interest to further investigate the effects of those processing variables on the interactions between $H₂$ and PANI-based polymers.

Since the discrepancy in hydrogen storage using PANI-based polymers might be caused by the different thermal treatments on HCl-treated PANI [\[53,57\],](#page--1-0) a study intended to further investigate the interactions between H_2 and HCl-doped PANI subject to thermal treatment conditions at \sim 25 °C, 100 °C, 164 °C or 200 °C was performed using conductometric devices integrated with HCldoped PANI nanofibers. The above four thermal treatment conditions were chosen because (i) studies on hydrogen sensing exper-iments were usually performed at room temperature [\[47,60\],](#page--1-0) (ii) extensive desorption of adsorbed water from PANI can occur at 100 °C $[61]$ and adsorption of water on PANI can suppress the function of hydrogen gas sensors based on PANI [\[47\],](#page--1-0) (iii) Panella et al. thermally treated HCl-doped PANI samples at 164 °C and showed 0% hydrogen uptake by HCl-doped PANI [\[57\]](#page--1-0), and (iv) Cho et al. thermally treated HCl-doped PANI samples at 200 °C and showed 6% hydrogen uptake by HCl-doped PANI [\[53\].](#page--1-0) In addition to conductometric measurement, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier-transform infrared (FTIR) spectroscopy were also used to study the morphology and chemical characteristics of HCl-doped PANI subject to thermal treatments.

2. Experimental

HCl-doped PANI nanofibers were synthesized by template-free oxidative chemical polymerization in a low-pH acidic aqueous medium [\[19,48,62\]](#page--1-0). Briefly, 10 ml of 0.02 M (NH₄)₂S₂O₈ in 1.0 M $HCl_(aq)$ was quickly poured into a beaker containing 10 ml of 0.02 M aniline in 1.0 M $\text{HCl}_{(aq)}$ under magnetic stirring. The mixed solution in the beaker was magnetically stirred for 5 min, after which the magnetic stirring was stopped and the polymerization was allowed to proceed in the beaker for 2 h. After the 2-h reaction, the reaction mixture was transferred to a dialysis tubing (Spectra/Por, $12-$ 14,000 MW cutoff). The reaction mixture was dialyzed against 4-L deionized water for 20 h. The dialysis bath was changed six times during the course of the 20-h dialysis. The dialyzed aqueous dispersion of PANI nanofibers (\sim 1 mg mL⁻¹) was then transferred to a storage vial for future use.

The home-built apparatus used to thermally treat HCl-doped PANI nanofiber samples and/or perform hydrogen sensing experiments in a controlled atmosphere of flowing nitrogen gas (99.99%) is shown in Fig. 1. For computer-controlled conductometric measurement (accuracy of current measurements: ± 100 pA), the PANI sample was deposited on a glass slide with addressable gold electrode lines (\sim 2 cm \times 5 µm; gap between the electrode lines: $500 \,\mu m$). After deposition, the device with the PANI sample was kept in a Petri dish. With the cover lid slightly left open, the sample was then dried in a fume hood. When the devices were not in use, they were stored in a desiccator to prevent excessive adsorption of water, which can suppress the function of PANI-based hydrogen gas sensors $[47]$. By modulating the gas-flow parameters, N₂ or 1% H₂ carried by N_2 was controllably delivered into the sealed gas-flow system to investigate the electrical response of HCl-doped PANI nanofibers subject to various thermal treatments $[63-65]$ $[63-65]$ $[63-65]$. For the preparation of various thermally treated PANI samples for material characterization, plain glass slides without electrode lines were used.

In this study, the SEM images were taken using a JEOL 6300FV field emission scanning electron microscope, the TGA profiles were taking using a TA Instruments 4100 thermal analyzer, and the FTIR spectra were recorded using a Perkin Elmer 2000 FTIR spectrometer.

Fig. 1. Schematic illustration of the home-built apparatus used for performing thermal treatments or conductometric measurements on PANI samples deposited on glass slides (not drawn to scale).

Download English Version:

<https://daneshyari.com/en/article/1522065>

Download Persian Version:

<https://daneshyari.com/article/1522065>

[Daneshyari.com](https://daneshyari.com)