Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/matchemphys

Materials Chemistry and Physics

Study on hot corrosion reactions between SmYbZr $_2O_7$ ceramic and vanadium pentoxide at temperatures of 600–1000 °C in air

Sa Li, Zhan-Guo Liu, Jia-Hu Ouyang*

National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Nangang District, Harbin 150001, Heilongjiang, China

ARTICLE INFO

Article history: Received 15 November 2010 Received in revised form 16 July 2011 Accepted 22 August 2011

Keywords: Ceramics Corrosion test Energy dispersive analysis of X-rays Microstructure

1. Introduction

Ceramic thermal barrier coatings (TBCs) are usually used in gas turbines as thermal insulation to promote operating temperature and eventually enhance the engine efficiency [1,2]. Currently, the widely used TBC material is 6–8 wt.% Y₂O₃–ZrO₂ (YSZ). However, tetragonal zirconia is transformable to monoclinic phase upon cooling when the operating temperature is above 1200 °C, accompanied by a destructive volume change of 3–5%, which might lead to catastrophic failure of TBCs [3–6]. In recent years, rare-earth zirconates as potential TBCs materials have drawn great attention due to their attractive properties including low thermal conductivity (~1.4–2.0 W m⁻¹ K⁻¹, 20–1400 °C), high thermal expansion coefficient (~10.9 × 10⁻⁶ K⁻¹ at 1200 °C) and high thermochemical stability in high-temperature environment [7–12]. Therefore, rare-earth zirconate ceramics are excellent alternatives for applications of TBCs in engines.

When TBCs work in less-refined fuels with certain amounts of contaminant elements such as vanadium, sulfur, sodium or phosphorus, hot corrosion, as another key failure mode, becomes crucial and predominant to the environmental durability of TBCs materials [13–20]. During service, molten salts condense on the TBCs and react with the ceramic topcoat, leading to accelerated deterioration of TBCs. Among those impurities, chemical interactions between vanadium pentoxide and zirconia-based coatings are fastest and therefore the most deleterious [17,18]. As a result,

ABSTRACT

SmYbZr₂O₇ ceramic powders were pressureless-sintered at 1700 °C for 10 h to fabricate dense bulk materials. SmYbZr₂O₇ exhibited a single phase of defect fluorite-type structure. Hot corrosion tests between SmYbZr₂O₇ and V₂O₅ were carried out in an electric furnace at temperatures of 600–1000 °C for 2 h in air, respectively, and the reaction products were investigated using X-ray diffraction, laser Raman spectroscopy and scanning electron microscopy. The final corrosion products were composed of (Sm,Yb)VO₄ and ZrV₂O₇ or *m*-ZrO₂, depending upon the reaction temperature. Hot corrosion mechanisms were further discussed based on the thermal instability of ZrV₂O₇ at elevated temperatures.

© 2011 Elsevier B.V. All rights reserved.

it is of great importance to explore a comprehensive understanding on vanadium-induced hot corrosion mechanism of rare-earth zirconates. Chen et al. studied the degradation of plasma-sprayed yttria-stabilized zirconia coatings via ingress of vanadium pentoxide at elevated temperatures. Phase evolution, from original corrosion product of ZrV₂O₇ to final decomposition product of *m*- ZrO_2 , is found during the reaction between corrosive V_2O_5 and plasma-sprayed YSZ at 600–1000 °C [19]. Plasma sprayed La₂Zr₂O₇ coatings are relatively insusceptible to the attack by V₂O₅ at 1000 °C [20]. These coatings remain well bonded to the substrate after a high temperature exposure to V₂O₅, and exhibit a good stability in microstructures. However, hot corrosion mechanisms on reactions between SmYbZr₂O₇ and vanadium pentoxide were not well understood. The present work attempts to provide insight into hot corrosion behavior of SmYbZr₂O₇ ceramic with a thermal exposure to V_2O_5 salt at temperatures of 600-1000 °C for 2 h in air.

2. Experimental procedures

SmYbZr₂O₇ ceramic powders were prepared through chemical-coprecipitation and calcination method with zirconium oxychloride (Zibo Huantuo Chemical Co., Ltd., Huizhou, China; Analytical) and samarium oxide, ytterbium oxide powders (Rare-Chem Hi-Tech Co., Ltd., Beijing, China; purity \geq 99.99%) as the starting materials. Details of the powder preparation process were given in our previous work [21]. The SmYbZr₂O₇ powders were molded by uniaxial stress, and the molded samples were further compacted by cold isostatic pressing method at 280 MPa for 5 min. The compacts were then pressureless-sintered at 1700 °C for 10 h at a heating rate of 5 °C min⁻¹ in air.

The specimens for hot corrosion tests were machined to the size of $10 \text{ mm} \times 10 \text{ mm} \times 3 \text{ mm}$ from the as-sintered SmYbZr₂O₇ ceramic. The specimens were ground to 1500 grit finish, ultrasonically degreased in acetone, and dried at 100 °C over night. The V₂O₅ powder was uniformly spread over the surface of SmYbZr₂O₇ specimens to ensure a salt coverage of 20 mg cm⁻² using a very fine glass

^{*} Corresponding author. Tel.: +86 451 86414291; fax: +86 451 86414291. *E-mail address:* ouyangjh@hit.edu.cn (J.-H. Ouyang).

^{0254-0584/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.matchemphys.2011.08.044

rod that was ultrasonically cleaned and dried. The V₂O₅-coated SmYbZr₂O₇ specimens were placed in a zirconia crucible, which was subsequently covered with a thin zirconia sheet during heat-treatment. The V₂O₅-coated SmYbZr₂O₇ specimens were isothermally heat-treated at temperatures of 600–1000 °C for 2 h in air. For a comparative Raman spectroscopic study on hot corroded products, hot corrosion tests of V₂O₅-coated Sm₂Zr₂O₇ and Yb₂Zr₂O₇ samples were also performed at different temperatures of 600–1000 °C for 2 h to obtain SmVO₄ and YbVO₄, respectively.

Crystal structures of hot corroded specimens were identified by an X-ray diffractometer (Rigaku D/Max-2200VPC, Tokyo, Japan) operated at 30 kV and 25 mA with Cu K\alpha radiation at a scan rate of 3° min⁻¹. The Raman spectra were collected with a microscopic confocal Raman spectrometer (Renishow RM2000) using 632.8 nm (1.96 eV) laser excitation. The laser power of about 5 mW was used to collect the back-scattered Raman signal. The Raman signal was collected for 20 s for all specimens. The microstructural analysis of hot corroded specimens was carried out with a scanning electron microscope (FEI Quanta 200F, Eindhoven, the Netherlands) equipped with energy-dispersive X-ray spectroscopy operating at 30 kV. A thin gold film was evaporated onto the surface of hot corroded specimens for electrical conductivity prior to SEM observations.

3. Results and discussion

Fig. 1 shows XRD patterns obtained from the V₂O₅-coated SmYbZr₂O₇ samples heat-treated at temperatures of 600-1000 °C in air. After hot corrosion tests at 600 °C for 2 h in air, the newly evolved peaks on the hot corroded surface include zirconium vanadate (ZrV₂O₇, JCPDS no. 16-0422) and (Sm,Yb)VO₄, whose diffraction peaks are very close to the peaks of both samarium vanadate (SmVO₄, JCPDS no. 72-0279) and ytterbium vanadate (YbVO₄, JCPDS no. 72-0271). As the diffraction peaks of SmVO₄ and YbVO₄ phases overlap each other in the XRD pattern, an explicit determination for (Sm,Yb)VO₄ solid solution is quite difficult. However, the XRD results of hot-corroded samples obtained at temperatures of 700-1000 °C for 2 h are very similar, all of which demonstrate strong diffraction peaks of (Sm,Yb)VO₄ and weak peaks of monoclinic zirconia (*m*-ZrO₂, JCPDS no. 37-1484). Clearly, the diffraction peaks of SmYbZr₂O₇ are identified at all test temperature levels. As the thickness of the hot corrosion layer is smaller than the X-ray penetration depth, the diffraction peaks of the substrate SmYbZr₂O₇ are also detected. To further confirm the presence of (Sm,Yb)VO₄ solid solution instead of a possible mixture of SmVO₄ and YbVO₄ phases, laser Raman spectroscopy (LRS) studies were performed. For a comparative Raman spectroscopic study on hot corroded products, hot corrosion tests of V2O5-coated Sm₂Zr₂O₇ and Yb₂Zr₂O₇ samples were also performed at different temperatures of 600-1000 °C for 2h to obtain SmVO₄ and YbVO₄, respectively. Fig. 2 shows the Raman spectra of SmVO₄,

Fig. 1. XRD patterns of V_2O_5 -coated $SmYbZr_2O_7$ specimens heat-treated at temperatures of 600–1000 $^\circ C$ for 2 h in air.

(in:e) (in:e)

Fig. 2. Raman spectra of SmVO₄, (Sm,Yb)VO₄ and YbVO₄ hot corroded products.

Fig. 3. Raman spectra of (Sm,Yb)VO₄ formed at temperatures of 700–1000 °C.

(Sm,Yb)VO₄ and YbVO₄ hot corroded products. As can be seen, Raman bands of SmVO₄ present at 878, 814, 811, 479 and 386 cm⁻¹, which are in good agreement with those reported in the literature [22]. The Raman spectrum of YbVO₄ shows all the characteristic bands [23]. From Fig. 2, Raman bands in (Sm,Yb)VO₄ spectrum lies between SmVO₄ and YbVO₄ spectra, instead of the overlapping of SmVO₄ and YbVO₄ spectra, which indicates that the solid solution of SmVO₄ and YbVO₄ is completely formed. Fig. 3 demonstrates Raman spectra of (Sm,Yb)VO₄ formed at temperatures of 700–1000 °C. No obvious Raman band shift is observed, which indicates that the phase composition keeps constant at different hot corrosion temperatures.

Fig. 4(a) shows typical surface morphology of the V_2O_5 -coated SmYbZr₂O₇ samples heat-treated at 600 °C for 2 h. Two kinds of different morphologies of hot corroded products are observed, marked as A and B in Fig. 4(a), respectively. Product A is block-shaped, while B is particle-shaped. EDS analysis in Fig. 4(b and c) identifies the compositions of different hot corroded products. In combination with the above XRD results, A is ZrV₂O₇ and B is (Sm,Yb)VO₄. As can be seen in region B, the particles are aggregative together, and their size is too small to be identified by EDS. SEM micrographs obtained on the surface of SmYbZr₂O₇ specimen after thermal exposure to the melt of V₂O₅ at 700 °C for 2 h, are

Download English Version:

https://daneshyari.com/en/article/1523526

Download Persian Version:

https://daneshyari.com/article/1523526

Daneshyari.com