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a  b  s  t  r  a  c  t

Elastic  properties  (i.e.  six independent  elastic  stiffness  constants,  C11, C12, C13,  C33, C44 and  C66)  of  chalcopy-
rite  structured  solids  were  evaluated.  Values  of  C11, C33, C44, C66, of  AIBIIIC2

VI and  AIIBIVC2
V chalcopyrite

semiconductors  exhibit  a linear  relationship  when  plotted  against  the  kBTm/˝  (kB =  Boltzmann’s  constant,
Tm =  melting  temperature,  ˝  =  atomic  volume)  normalization,  but fall on  two  straight  lines  according
to  the  product  of  ionic  charges  of  the compounds.  The  calculated  results  are  compared  with  available
experimental  data  and  previous  calculations  based  on  phenomenological  models.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Chalcogenide and pnictide semiconductors with the formula
AIBIIIC2

VI and AIIBIVC2
V have been widely studied because of their

possible technological applications as photo-voltaic detectors, solar
cells, light emitting diodes, modulators, filters and their use in
nonlinear optics [1–5]. These semi-conductors crystallize in the
chalcopyrite structure, which is deduced from that of zinc blende by
the replacement of the cationic sublattice by two  different atomic
species. This induces the doubling of the zinc blende unit cell and
introduces a tetragonal distortion characterized [6] by the param-
eter � = c/2a, where a and c are the lattice parameters, and by
the anion displacement u = 0.25 + (d2

A–C + d2
B–C)/a2 from its posi-

tion in the cubic cell, where dA–C and dB–C are the cation–anion
distances. Because of the added structural (�; u) and chemical
(dA–C /= dB–C) degrees of freedom relative to their binary analogue,
the ternary semi-conductors exhibit a wide range of interesting
physical and chemical properties [2–4]. Although different meth-
ods of material preparation for these chalcopyrite (AIBIIIC2

VI and
AIIBIVC2

V) compounds have been suggested [6],  the knowledge
of many of the physico-chemical properties that are essential for
designing appropriate conditions for the growth of bulk single crys-
tals and of high-quality epitaxial layers is still inadequate. The
elastic properties of these compounds are characterized by six
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independent elastic stiffness constants Cij: C11, C12, C13, C33, C44,
and C66 [7],  because of this anisotropy of the elastic properties of
these compounds it is evident that the availability of sufficiently
large, single phase, homogeneous and defect-free single crystals
is an essential precondition for reliable experimental determina-
tions of the elastic constants independent of the specific method
used. Table 1 presents the six deformation adapted to the tetragonal
I42d(D12

2d
) space group (Laue class 42m), that we have used to cal-

culate the six elastic constants of chalcopyrite crystals. In general,
the strain deformations reduce the symmetry of the cell, eventually
increasing the number of degrees of freedom that have to be mini-
mized. Deformations 4–6 in Table 1, for instance, have four internal
coordinates of the atoms within the unit cell that are not fixed by
symmetry and must be optimized for each deformed cell geometry.

Elastic constants of most of the chalcopyrite family of semi-
conductors have not been determined experimentally because of
various difficulties in growing single crystals of these compounds
[3,8]. Experimental determinations of elastic stiffness constants,
compressibilities and bulk moduli for chalcopyrite compounds
have been reported in the literature but the results are often con-
tradictory [9].  Attempts have been made to fill this gap in the
knowledge of the elastic properties of the chalcopyrites by theoret-
ical calculations using different approaches, but mostly the results
obtained differ considerably, and in many cases no satisfactory
agreement has been achieved with existing experimental data. On
the other hand, the availability of reliable elastic constant data is
an essential prerequisite for any calculation or analysis of the influ-
ence of pressure, stress and strain on the properties of crystals and
thin epitaxial layers.
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Table  1
Strains for the tetragonal chalcopyrite crystals phase.

Deformation 1 2 3 4 5 6

Strains ı1 = ı2 = x ı1 = ı2 = xı3 = −x(2+x

(1+x)2 ı3 = x ı1 =
√

1+x
1−x − 1;ı2 =

√
1−x
1+x − 1 ı4 = ı5 = xı3 = x2

4 ı6 = x;ı1 =
√

1 + x2

4 − 1;ı2 =
√

1 + x2

4 − 1

In the past few years [10], a number of theoretical calcula-
tions based on empirical relations have become an essential part
of material research. In many cases empirical relations do not give
highly accurate results for each specific material, but they still can
be very useful. In particular, the simplicity of empirical relations
allows a broader class of researchers to calculate useful proper-
ties, and often trends become more evident. Empirical concepts
such as valence, empirical radii, ionicity and plasmon energy are
then useful [11–15].  These concepts are directly associated with
the character of the chemical bond and thus provide means for
explaining and classifying many basic properties of molecules and
solids.

Recently, Verma and co-authors [15–18] have been evaluated
the structural, electronic, mechanical and ground state properties
of binary and ternary crystals with the help of valence electron
theory of solids. In this paper, we explore the applicability of
the kBTm/  ̋ (kB = Boltzmann’s constant, Tm = melting temperature,

 ̋ = atomic volume) normalization for the elastic constants (i.e. six
independent elastic stiffness constants, C11, C12, C13, C22, C33, C44,)
of chalcopyrite (AIBIIIC2

VI and AIIBIVC2
V) semiconductors. We  note

that Yonenaga and Suzuki have already used the parameter G˝/kB

(G = shear modulus) to scale temperatures in a study of the elevated
temperature mechanical properties of compound semiconductors.
[19]. The proposed empirical relationship only the kBTm/  ̋ normal-
ization and ionic charge are required as input, the computation of
mechanical properties itself is trivial, and the accuracy of the results
compares well with experimental values. The method turns out to
be widely applicable.

2. Physical concepts

Several attempts have been made to estimate the elastic con-
stants of chalcopyrite compounds using phenomenological models.
In the first application of the rigid ion model to chalcopyrites [20],
it has been shown that the frequencies of the infrared active zone-
centre optical phonon modes can be well reproduced using an
approximation for the inter-atomic forces which takes into account
only interaction between nearest neighbours and two effective
charge parameters. The Keating model, one of the valence-force-
models, has been originally derived to describe he elastic properties
of the covalently bonded semiconductors with diamond structure
using two short-range force constants only, the bond-stretching
force constant for the interaction between nearest neighbours
and the bond-bending force constant for the interaction between
second-nearest neighbours [21]. There are a number of ways to
calculate the elastic coefficients of a material from theoretical
methods.

Siethoff [22] suggested another basis for correlation of the elas-
tic properties of materials and the activation energies of their
transport properties, based on the Debye temperature, and pre-
sented data for cubic metals and compound semiconductors.
However, Siethoff’s empirical relations required quite dramatic
changes in form for different crystal structures, which reduces their
usefulness and questions whether they rest on any physical prin-
ciples. Reeber and Wang [23] also used the Debye temperature but
now used it to produce an empirical correlation for the temperature
dependence of elastic properties. Correlations for elastic properties

that require the Debye temperature also contain an inherent risk of
circularity of argument, because many published estimates of the
Debye temperature are themselves derived from measures used to
determine crystal elastic properties (e.g., the speed of sound in a
material).

Simple empirical methods of predicting the physical properties
of materials are of interest to research communities other than
that of compound semiconductors. An extensive study of the rela-
tionship between the transport properties of materials of different
crystal structure and bond chemistry was undertaken by Brown and
Ashby [24]. They found that a more reliable correlation for physi-
cal transport properties was  provided by the melting temperature
rather than the Debye temperature. This was further extended by
Frost and Ashby [25], who  presented evidence for a very strong
correlation between the elastic properties of polycrystalline solids
and their melting temperature Tm, with the following empirical
relationships proposed for Young’s modulus, E and shear modulus
G:

E = 100kBTm

˝
(1)

G = 44kBTm

˝
(2)

Here, kB is Boltzmann’s constant and  ̋ is the atomic volume.
Frost and Ashby further refined these empirical relations by study-
ing the variation of the numerical parameter in the shear modulus
correlation 44 in Eq. (2) with material class, which is determined by
crystal structure and chemical bonding. This constant was  found to
be approximately constant for each material class and varied from
20 for alkali metals to 95 for simple oxides with the corundum (�-
Al2O3) crystal structure. From this they developed the concept of
the isomechanical group, which is a group of materials that display
identical or very similar mechanical and transport properties when
described by the appropriate empirical normalization.

3. Concept of ionic charge theory

A chemical bond is formed when the atoms with incomplete
valence shells combine. There are following main types of bonds:

1. Ionic or electrovalent bond.
2. Covalent bond.
3. Coordinate bond.
4. Mettalic bond.

The valence electrons refer to the electrons that take part in
chemical bonding. These electrons reside in the outer most elec-
tron shell of the atom. The participation of valence shell electrons
in chemical bonding may  be explained on the basis of following
grounds:

(i) The outermost-shell electrons are farthest away form the
nucleus and therefore, are not very firmly bound to the nucleus.

(ii) The outermost-shell electrons of an atom are also close to any
foreign atom that may  approach them and are therefore the
first to be attracted by the approaching atom.
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