Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/matchemphys

Preparation of Ba-Ti-O films by laser chemical vapor deposition

Akihiko Ito*, Dongyun Guo, Rong Tu, Takashi Goto

Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

ARTICLE INFO

Article history: Received 8 May 2011 Received in revised form 19 December 2011 Accepted 18 January 2012

Keywords: A. Inorganic compound A. Ceramics B. Chemical vapor deposition D. Microstructure

1. Introduction

The barium oxide (BaO)–titanium dioxide (TiO₂) quasi-binary system has been extensively studied for application in dielectric materials such as BaTi₅O₁₁ (BT₅), Ba₂Ti₉O₂₀ (B₂T₉), BaTi₄O₉ (BT₄), Ba₄Ti₁₃O₃₀ (B₄T₁₃), Ba₆Ti₁₇O₄₀ (B₆T₁₇), BaTi₂O₅ (BT₂), BaTiO₃ (BT) and Ba₂TiO₄ (B₂T) [1–4]. The TiO₂-rich compounds such as BT₅, B₂T₉, BT₄, B₄T₁₃ and B₆T₁₇ have microwave applications [5,6], and the BaO-rich phase of B₂T is a CO₂ gas absorber [7]. BT has been extensively studied as a lead-free ferroelectric compound for application in memory and piezoelectric actuators. BT₂ has recently been attracting much attention as a new ferroelectric compound having a high Curie temperature (T_C = 740 K) for high temperature applications [8,9].

The Ba–Ti–O compounds can be prepared in thin or thick film forms for diverse applications. Yet, only BT films have been intensively studied and widely used [10–22]. Other types of Ba–Ti–O films are scarcely prepared and are infrequently used in manufacturing despite unique dielectric properties and considerable promise [5,7–9]. A limited number of studies on BT₂ films prepared by physical vapor deposition (PVD) techniques such as sputtering and laser ablation have been reported [23–26]. In case of chemical vapor deposition (CVD) technique, although we used metal–organic chemical vapor deposition across a wide range of Ba/Ti ratios (from 0.1 to 1), only TiO₂ and BT phases were identified in the films [21]. This result implied that formation of TiO₂ is kinetically favorable in thermal CVD process. So far, the

ABSTRACT

Ba–Ti–O films were prepared on Pt-coated Si substrate by laser chemical vapor deposition, and their orientations and microstructures were compared. Ba₂TiO₄, BaTiO₃, BaTi₂O₅, Ba₄Ti₁₃O₃₀ and BaTi₄O₉ single-phase films were prepared at Ti to Ba molar ratio from 0.41 to 3.49. The α' -Ba₂TiO₄ film showed (010) and (091) co-orientation with elongated, truncated columnar grains. The BaTiO₃ film was composed of triangular and hexagonal grains with slight (111) orientation. The BaTi₂O₅ film had (010) orientation and faceted columnar grains. The Ba₄Ti₁₃O₄₀ film showed (100) and (012) co-orientation with shellfish-like grains. The BaTi₄O₉ film showed (010) orientation with slightly rounded faceted columnar grains. The deposition rates of Ba–Ti–O films ranged from 30 to 144 μ m h⁻¹.

© 2012 Elsevier B.V. All rights reserved.

TiO₂-rich compounds have not been synthesized in a single phase by conventional CVD.

We have applied intense laser field in CVD process to enhance chemical reactions and have reported the successful application of laser CVD to prepare complex oxide films such as Y_2O_3 – ZrO_2 , Al_2O_3 , Y_2SiO_5 and $YBa_2Cu_3O_{7-\delta}$ thick films at high deposition rates (several hundred micrometers per hour) [27–30]. Therefore, laser CVD would prepare the TiO₂-rich compounds, such as BT_2 , B_6T_{17} , B_4T_{13} and BT_4 , under highly activated chemical reaction conditions by varying Ti to Ba molar ratio in a source gas. In the present study, we investigate the effects of supplied Ti/Ba molar ratio and deposition temperature on phase relationship and demonstrate that laser CVD can be employed to prepare various Ba–Ti–O thick films.

2. Experimental

Ba–Ti–O films were prepared by laser CVD with a continuouswave Nd:YAG laser (wavelength: 1064 nm). A schematic of the laser CVD apparatus has been reported elsewhere [30] and the deposition conditions are summarized in Table 1. The (111)oriented Pt-coated (111) Si substrate with Ti and SiO₂ buffer layers (Pt/Ti/SiO₂/Si) was used. The substrate was placed on a hot stage, and a thermocouple was inserted at the bottom side to measure the deposition temperature (T_{dep}) and was pre-heated to 773 K. A laser beam was introduced into the CVD chamber through a quartz window to irradiate the whole area of the substrate and the laser power (P_L) was increased from 57 to 93 W. The barium dipivaloylmethanate (Ba(dpm)₂) and titanium diisopropoxy-dipivaloylmethanate (Ti(OiPr)₂(dpm)₂) precursors were evaporated by heating. The evaporation temperature of the Ba source (T_{Ba}) was fixed at 563 K and the Ti source (T_{Ti}) was changed

^{*} Corresponding author. Tel.: +81 22 215 2106; fax: +81 22 215 2107. *E-mail address:* itonium@imr.tohoku.ac.jp (A. Ito).

^{0254-0584/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.matchemphys.2012.01.048

Table 1
Deposition conditions of Ba-Ti-O films by laser CVD.

$Ba(dpm)_2$ evaporation temperature (T_{Ba})	563 K
$Ti(OiPr)_2(dpm)_2$ evaporation temperature (T_{Ti})	419-454 K
Substrate pre-heating temperature (Tpre)	773 K
Total chamber pressure (P _{tot})	400 Pa
Ar gas flow rate (FR _{Ar})	$8.3\times 10^{-7}\ m^3\ s^{-1}$
O_2 gas flow rate (FR_{O_2})	$1.7 imes 10^{-6} \ m^3 \ s^{-1}$
Laser power (P _L)	57–93 W
Deposition time (t)	600 s
Substrate-nozzle distance	25 mm
Substrate	Pt/Ti/SiO ₂ /Si
	$(10\text{mm} \times 10\text{mm} \times 0.5\text{mm})$

from 419 to 454 K to change the Ti to Ba molar ratio $(m_{\text{Ti/Ba}})$ in a source gas. The evaporated amounts of Ba and Ti precursors were calculated from the mass change of the precursor container before and after the deposition measured by an electronic balance. The precursor gases were delivered to the CVD chamber in an Ar carrier. O₂ gas was introduced separately through a double-tube gas nozzle. The total chamber pressure (P_{tot}) was held at 400 Pa and deposition was conducted for 600 s.

The crystal phase was determined by X-ray diffraction (XRD, Rigaku RAD-2C). The cross-section and surface morphology were observed by a scanning electron microscope (SEM, Hitachi S-3100H). A schematic of the crystal structures of Ba–Ti–O compounds was constructed using VESTA, a three-dimensional visualization system [31].

3. Results and discussion

3.1. Preparation of Ba-Ti-O films

Fig. 1 shows $m_{\text{Ti/Ba}}$ as a function of T_{Ti} at $T_{\text{Ba}} = 563$ K. The $m_{\text{Ti/Ba}}$ was estimated from the evaporation amounts of Ba and Ti precursors. By increasing T_{Ti} from 419 to 454 K, $m_{\text{Ti/Ba}}$ increased from 0.41 to 3.61. Fig. 2 depicts the effect of P_{L} on T_{dep} at various $m_{\text{Ti/Ba}}$. Increasing P_{L} from 57 to 93 W results in a concomitant increase in T_{dep} , *e.g.*, from 865 to 946 K at $m_{\text{Ti/Ba}} = 0.41$.

Fig. 3 shows the XRD patterns of Ba–Ti–O films prepared at various $m_{\text{Ti/Ba}}$. The single-phase α' -B₂T film was formed at $m_{\text{Ti/Ba}}$ = 0.41 and T_{dep} = 894 K (Fig. 3(a)). Relative intensities of (0120) and (091) peaks were higher than those reported in the JCPDF #75-0677, whereas the relative intensities of (101), (131), (161) and

Fig. 1. Ti/Ba supply molar ratio $(m_{\text{Ti/Ba}})$ as a function of T_{Ti} at $T_{\text{Ba}} = 563$ K.

Fig. 2. Effects of $P_{\rm L}$ on $T_{\rm dep}$ for Ba–Ti–O film deposition at various $m_{\rm Ti/Ba}$.

(063) peaks were lower than those in the JCPDF, implying (010)preferred orientation of α' -B₂T film. Both the BT and B₂T phases appeared with B_2T phase at $m_{Ti/Ba}$ ratios from 0.58 to 0.79 and $T_{\rm dep}$ = 883–991 K. At a $m_{\rm Ti/Ba}$ of 0.91 and a $T_{\rm dep}$ of 957 K, a singlephase BT film was obtained (Fig. 3(b)). A relative intensity of (111) peak was slightly higher than that of the JCPDF #79-2264, whereas those of (100) and (001) peaks were weak, suggesting $(1\,1\,1)$ -orientation growth of BT film. The single-phase BT₂ film was obtained at $m_{\text{Ti/Ba}}$ = 1.72 and T_{dep} = 978 K (Fig. 3(c)), and a significant (010) orientation was identified in comparison to the JCPDF #72-3812. At T_{dep} = 997 K and $m_{Ti/Ba}$ = 2.62, a single-phase B₄T₁₃ film was formed (Fig. 3(d)). A significant (012) and (100) coorientation was identified in this B4T13 film in comparison to JCPDF #73-1188. A single-phase BT₄ film was prepared at $m_{\text{Ti/Ba}}$ = 3.49 and $T_{dep} = 1049 \text{ K}$ (Fig. 3(e)). For this product, relative intensity of (020) peak was slightly higher than that reported in JCPDF #77-1565, whereas relative intensities of (100) and (001) peaks were lower than those of the JCPDF, implying *b*-axis orientation growth of BT₄ film.

3.2. Phase relation of Ba-Ti-O films and bulks

Fig. 4(a) shows the effect of $m_{Ti/Ba}$ and T_{dep} on phase relationships for Ba-Ti-O films. Single-phase B₂T films were obtained at $m_{\text{Ti/Ba}} = 0.41$. Increasing the $m_{\text{Ti/Ba}}$ ratio to a range 0.58–0.79 resulted in the BT phase being co-deposited with the B₂T phase. Up to T_{dep} = 1037 K and $m_{Ti/Ba}$ = 0.91, single-phase BT films were obtained. A further increase in $m_{Ti/Ba}$ to 1.06 resulted in the codeposition of both the BT₂ and BT phases. At $m_{Ti/Ba}$ = 1.48, the BT₂ and B₆T₁₇ phases were co-deposited with the BT phase. The singlephase BT₂ film was obtained below $T_{dep} = 1074 \text{ K}$ at $m_{Ti/Ba} = 1.72$. A mixture of BT₂ and B_6T_{17} were deposited at $m_{Ti/Ba} = 1.72$ and $T_{\rm dep}$ = 1092 K in the $m_{\rm Ti/Ba}$ range 1.94–2.27. Single-phase B₄T₁₃ was obtained at $m_{\text{Ti/Ba}}$ = 2.62 below T_{dep} = 1000 K, while a mixture of B_4T_{13} and BT_4 was deposited above $T_{dep} = 1000$ K. At $m_{Ti/Ba} = 2.89$, a mixture phase of B_4T_{13} , BT_4 and BT_5 was obtained. A singlephase BT₄ was obtained at $m_{\text{Ti/Ba}}$ = 3.49 and T_{dep} = 1050 K, while the B₂T₉ and BT₅ phases were co-deposited with the BT₄ phase below T_{dep} = 1050 K. A mixed phase of BT₄, B₂T₉ and BT₅ was obtained in the range $m_{\rm Ti/Ba} = 3.63 - 3.65$.

Fig. 4(b) shows an equilibrium phase diagram of the BaO–TiO₂ bulk system [32]. $m_{\text{Ti/Ba}}$ for preparing single-phase B₂T, BT₂, B₄T₁₃ and BT₄ films (Fig. 4(a)) was largely consistent with the Ti/Ba molar ratio of each phase reported in the diagram. $m_{\text{Ti/Ba}}$

Download English Version:

https://daneshyari.com/en/article/1524226

Download Persian Version:

https://daneshyari.com/article/1524226

Daneshyari.com