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a b s t r a c t

Development of variance component algorithms in genetics has previously mainly focused on animal
breeding models or problems in human genetics with a simple data structure. We study alternative
methods for constrained likelihood maximization in quantitative trait loci (QTL) analysis for large com-
plex pedigrees. We apply a forward selection scheme to include several QTL and interaction effects, as
well as polygenic effects, with up to five variance components in the model. We show that the imple-
mented active set and primal-dual schemes result in accurate solutions and that they are robust. In
terms of computational speed, a comparison of two approaches for approximating the Hessian of the
log-likelihood shows that the method using an average information matrix is the method of choice for
the five-dimensional problem. The active set method, with the average information method for Hessian
computation, exhibits the fastest convergence with an average of 20 iterations per tested position, where
the change in variance components <0.0001 was used as convergence criterion.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Quantitative trait loci (QTL) are regions on the genome that
affect traits measured on a continuous scale. These traits are
affected both by several genetic regions and by environmental fac-
tors. QTL detection has been a major field of research for several
decades (Lynch and Walsh, 1998), where experimental data has
shown to be of great importance and has given unique insights to
the genetic architecture of quantitative traits (Carlborg and Haley,
2004).

Experimental data, resulting in high power for QTL detection,
may be derived by crossing two breeds that are expected to differ
genetically. The relationship between trait values and genotypes
can be analyzed after two generations of controlled breeding. These
experiments are referred to as F2 intercrosses. A standard statistical
tool for analyzing F2 intercrosses is the simple regression model,
which assumes no genetic variation between individuals of the
same breed (Haley and Knott, 1992; Broman, 1997; Ljungberg et
al., 2002). However, there is often some genetic variation within
the two breeds, and this variation may be modeled as a random
effect in a more advanced variance component model (Rönnegård
and Carlborg, 2007; Perez-Enciso and Varona, 2000).
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In a variance component QTL analysis, all the founders of the F2
intercross are assumed to be unrelated with genes randomly sam-
pled from an outbred population. QTL mapping based on a variance
component model is computationally demanding. The computa-
tional procedure consists of an inner problem and an outer problem.
In the inner problem a variance component model is fitted at a
given position in the genome. The value of the likelihood ratio
statistic is calculated for this model and is subsequently used in
the outer problem. The outer problem consists of finding the posi-
tion, among all tested positions, with highest likelihood ratio value.
Hence, the dimensionality of the inner problem is equal to the num-
ber of variance components to be estimated, whereas the number
of dimensions in the outer problem is given by the number of QTL
that we wish to fit simultaneously.

Calculation of the likelihood ratio statistic requires variance
component estimation, where restricted maximum likelihood
(REML) estimation is used to ensure unbiased estimates of vari-
ance components. Variance component estimation consists of a
non-linear optimization problem where the computation of the
objective function and its derivative is rather costly. Fast variance
component estimation programs developed for animal breeding
problems (e.g. ASReml (Gilmour et al., 2002) and DMU (Madsen
and Jensen., 2008)) are often used in QTL analysis (e.g. Rowe et
al., 2009). These variance component estimation programs have
been developed to analyze large data sets (≈ 106 observations) and
to compare a moderate number of models (usually < 10). In QTL
analysis, however, the size of the data sets are moderate (≈ 103

observations), whereas the number of models compared are large
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(usually > 1000). Consequently, the variance component estima-
tion program developed for QTL analysis needs to be robust so that
the algorithm converges for all fitted models. Once the robust-
ness has been verified, further efforts can be made to reduce the
computational cost of the calculations.

Variance component estimation algorithms have also been
developed for QTL analysis in human pedigrees consisting of inde-
pendent families (for instance in the SOLAR software (Almasy and
Blangero, 1998)), where the size of each family is small. This gives a
block-diagonal structure in the variance component model which
results in significant simplifications in the computational algo-
rithms and convergence problems does not seem to be an issue.
In the current paper, we focus on large complex pedigrees that do
not have this simple structure.

A major problem in variance component estimation is that the
parameter space is constrained (since variances are > 0). This fact
needs to be accounted for by employing established techniques for
constrained optimization (e.g. primal-dual and active set methods
(Forsgren and Gill, 1998)). Convergence for variance components
on, or close to, the parameter boundary may otherwise not be
guaranteed. A commonly used algorithm for variance component
estimation in animal breeding is the average information REML
(Johnson and Thompson, 1995), which has been implemented in
the ASReml and DMU software (Gilmour et al., 2002; Madsen and
Jensen., 2008). The focus has been on speed rather than estimat-
ing parameters close to, or on, the boundary in this algorithm,
since it is primarily developed for animal breeding applications.
For parameter estimates on, or outside, the parameter boundary
DMU combines average information REML with an expectation-
maximization (EM) algorithm to enable convergence within the
parameter space. ASReml does not allow zero variances and sets
a lower limit to the variance components equal to a small pos-
itive value. To our knowledge, these methods do not guarantee
convergence within the parameter space.

Previously we have investigated the possibilities of using active
set and primal-dual methods for the simplest possible model with
two variance components (Mishchenko et al., 2008), a QTL vari-
ance and a residual variance, where the given correlation structure
for the QTL variance is low rank or can be approximated by a low
rank correlation structure (Rönnegård et al., 2007). Fast compu-
tation of projection matrices and matrix inversions has also been
derived for the two variance component problem (Mishchenko and
Neytcheva., 2009).

In QTL analysis, it is also common to include random poly-
genic effects as well as QTL effects (Lynch and Walsh, 1998). The
correlation structure for polygenic effects (i.e. the additive relation-
ship matrix) is full rank and adds an additional complexity to the
variance component estimation problem. Furthermore, possible
interaction effects between QTL (i.e. epistasis) at several positions
on the genome is important to include in the analysis (Carlborg
and Haley, 2004). Hence, problems with more than two dimen-
sions for the inner problem needs to be studied and will put higher
requirements on the computational robustness for the variance
component estimation algorithm.

The aim of the current paper is to investigate optimization
techniques for the inner problem based on the active set and
primal-dual algorithms for constraint optimization, and we apply
these schemes for QTL mapping models with 3–5 variance com-
ponent problems. We wish to find a scheme which is numerically
robust and efficient. Moreover, the performance of the schemes
using different methods for approximating the Hessian of the log-
likelihood are compared. The methods are tested on published data
(Carlborg et al., 2006), where the previous analysis was based on
a regression model (Haley and Knott, 1992) assuming no within-
breed variation. We briefly discuss differences and similarities
between our results and these earlier analyses.

2. The restricted maximum likelihood approach

In this section, we consider models where a one-dimensional
genome scan is performed for estimating 3–5 variance components.
We start by considering a model of a single QTL and additional poly-
genic effects. Polygenic effects are the combined effects of many
genes at different loci each having a small effect (Lynch and Walsh,
1998), whereas a QTL effect is the effect of a restricted part of the
genome. The correlation structure for polygenic effects is given
by the additive relationship matrix and is calculated from pedigree
information, whereas the correlation structure for the QTL effect is
given by the identity-by-descent (IBD) matrix. Elements of the IBD
matrix are estimated from pedigree and marker information (Lynch
and Walsh, 1998).

2.1. A single QTL and polygenic effects (3D-SCAN)

Variance component analysis for single QTL and polygenic
effects is based on a general linear mixed model,

y = Xb + Z1u1 + Zaa + e, (1)

where y is a vector of n individual phenotypes of a normally dis-
tributed trait, X is an n × nf design matrix for fixed effects, Z1 is an
n × nr design matrix for random effects, b is a vector of nf unknown
fixed effects, u1 is a vector of nr unknown random effects for an
individual QTL, Za is a n × na design matrix for additional polygenic
effects, a is a vector of na random polygenic effects, and e is a vector
of n residuals of random effects. All random effects are assumed to
be normally distributed.

For the QTL analysis setting we also assume that the entries in
e are identically and independently distributed and that there is a
single observation for each individual. Let �1 be the IBD matrix and
A the additive relationship matrix, then the variance–covariance
matrix for (1) is

V = �1�2
1 + A�2

a + I�2
e , (2)

where �2
1 is the variance of the random QTL effect, �2

a is the variance
of polygenic effects and �2

e is the residual variance.
In REML estimation, the parameters �2

1 , �2
a , �2

e are obtained as
maximizers of the restricted likelihood function l of the observed
data y. This is done by minimizing the restricted log-likelihood
function L(�) associated with (1),

L = −2 ln(l) = C + ln(det(V)) + ln(det(XT V−1X)) + yT Py. (3)

Here, C is normalizing constant, � is the vector of variance com-
ponents and the projection matrix P is defined by

P = V−1 − V−1X(XT V−1X)
−1

XT V−1. (4)

In summary, we solve the inner problem, i.e. determine the esti-
mates of �2

1 , �2
a , �2

e , by solving the optimization problem:

min L(�) (5)

s.t.

�1 ≥ 0, �2 ≥ 0, �3 > 0. (6)

Below, we use the notation � = (�2
1 , �2

a , �2
e ) = (�1, �2, �3). To

determine the main QTL and its effect we need to solve the outer
problem and search for the best model fit over the genome. The
position �0 with the best likelihood value is the most likely position
of the main QTL.

2.2. Forward selection for an additional QTL (4D-SCAN)

To solve the problem of finding several QTL, a simulta-
neous search for them should in principal be performed. For
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