

Available online at www.sciencedirect.com

Materials Chemistry and Physics 105 (2007) 67–70

www.elsevier.com/locate/matchemphys

Ethanol-sensing characteristics of $CdFe₂O₄$ sensor prepared by sol–gel method

Xiangdong Lou^{a,∗}, Shuping Liu^b, Dongyang Shi^a, Wenfei Chu^a

^a *College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, PR China* ^b *Library, Henan Normal University, Xinxiang 453007, PR China*

Received 22 October 2005; received in revised form 5 March 2007; accepted 8 April 2007

Abstract

 $CdFe₂O₄$ powder with the structure of spinel-type was fabricated by sol–gel method in the citric acid system. The structure and the crystal phase of the powder were characterized on an X-ray diffractometer (XRD). The shape and the size were analyzed by transmission electron microscope (TEM). Several items were investigated, including effects of calcining temperature on gas-sensing properties, gas response vs. working temperature, selectivity and long-term stability. The results demonstrated that the CdFe₂O₄ sensor prepared with the powder calcined at 700 °C has a high response, an excellent selectivity, a quick response behavior, and a good stability to ethanol comparing with the CdFe₂O₄ sensors which dealt with at other temperatures. Its response to 100 ppm ethanol is 55 working at 250 °C. © 2007 Published by Elsevier B.V.

Keywords: CdFe₂O₄; Ethanol sensor; Response characteristics

1. Introduction

Ethanol-sensing material has been widely and deeply studied. Conventional ethanol sensors, mostly based on $SnO₂ [1]$, ZnO $[2]$, TiO₂ $[3]$, and Fe₂O₃ $[4]$, and usually suffering from cross-response to other gases, need a high working temperature, or have low long-term stability, although they have rather high response to ethanol. So the research for new ethanol-sensing materials and developing the properties of conventional ethanolsensing materials has become an active research field. New ethanol sensors are based on In_2O_3 [5], V_2O_5 [\[6\], a](#page--1-0)nd complex oxide [\[7,8\].](#page--1-0) Their properties still need further investigation.

Spinel-type oxide with a formula of AB_2O_4 is important complex oxide in gas-sensing materials. The literature has reported $CdFe₂O₄$ sensor to show a high response to dilute CH₃SH [\[9\]](#page--1-0) and ethanol. The response of $CdFe₂O₄$ sensor prepared by chemical precipitation method was more than 20 to 100 ppm ethanol at 300 °C [\[10\]. A](#page--1-0)nd the Ag doped CdFe₂O₄ sensor prepared by sol–gel response was 39.18 to 45 μ mol L⁻¹ (about 1000 ppm) ethanol at 330 °C [\[11\].](#page--1-0) In this study, CdFe₂O₄ powder was prepared by sol–gel method, and its response to 100 ppm ethanol

0254-0584/\$ – see front matter © 2007 Published by Elsevier B.V. doi[:10.1016/j.matchemphys.2007.04.038](dx.doi.org/10.1016/j.matchemphys.2007.04.038)

was 55 at 250 °C. The material prepared by the present method shows high response and low working temperature when compared with the materials mentioned previously.

2. Experimental

2.1. Preparation of CdFe2O4 powders

CdFe2O4 nanopowder was prepared by sol–gel method. Cd(NO3)2·4H2O, Fe(NO₃)₂.9H₂O, and citric acid were used as raw materials. Cd(NO₃)₂.4H₂O and Fe(NO₃)₂.9H₂O (molar ratio = 1:2) were mixed in de-ionized water. 0.2 M citric acid was introduced into the mixed solution (molar ratio Cd + Fe/citric acid = 1:2). The mixture was stirred and sol formed. The sol was evaporated on a water bath at 80 ◦C then dried at 102 ◦C in baking oven until xerogel formed. The xerogel was ground in agate mortar and turned into powder. The powder was slowly heated to 400 °C and pre-calcined for 4 h to make the organic matter decompose completely then calcined between 700 and 900 ◦C for 4 h.

X-ray diffraction (XRD) patterns of the nanopowder were obtained with an X-ray diffractometer (Bluker D8-Advance) using Cu K α radiation $(\lambda = 1.5406 \text{ Å})$ with operating voltage of 40 kV and current of 20 mA. The shape and the size of powder were analyzed by transmission electron microscopy (JEM-100SX).

2.2. Fabrication of element and measurement of gas-sensing properties

Appropriate quantity of α -terpineol was added to the powder. The mixture was then ground to form paste. The paste obtained was coated onto ceramic

[∗] Corresponding author. Tel.: +86 13623731736; fax: +86 3733326336. *E-mail address:* lshping622@yahoo.com.cn (X. Lou).

Fig. 1. Graphic of testing principle.

tubes. The two platinum wires had been installed at each end of the tube. The paste on the ceramic tubes was calcined at 600 ◦C for 1 h in air and aged at 320° C for 240 h. A small Ni–Cr alloy coil was placed through the tube as a microheater. Electrical contacts were made with two platinum wires attached to the electrodes. The sensors were set up in a glass chamber and kept under a continuous flow of fresh air for 10 min before measurement. When sensors were tested, a measured quantity of gases was injected into the tested chamber and mixed by a fan for 30 s (liquid reagents were firstly evaporated then mixed by a fan for 30 s). The measuring principle of gas-sensing properties was shown in Fig. 1. The heating voltage (V_h) was supplied to the coils for heating the sensors and the circuit voltage (V_c) was supplied across the sensors and the load resistor (*R*L) connected in series. The signal voltage (*V*out) across the load, which changed with species and concentration of gas, was measured. The sensitivity for gases, *S*, is defined as $S = R_a/R_g$, where R_a and R_g are the resistance of the sensors in the air and in the testing gases/air mixture, respectively.

3. Results and discussion

3.1. Structural characteristics of CdFe2O4 powder

Fig. 2 shows the X-ray diffraction patterns of $CdFe₂O₄$ powder calcined at 700–900 °C for 4 h. Spinel-type CdFe₂O₄ formed when the gel was calcined at 700 and $800\degree C$, but the weak diffraction peaks of $Fe₂O₃$ phase were observed in the pattern. When the calcining temperature was elevated to 900 ◦C, the $Fe₂O₃$ phase disappeared primarily. And the sharp and intense peaks appeared in the XRD profiles, indicating a high degree of crystallinity and increased grain sizes of the nanoparticles. The crystallite sizes calculated according to Scherrer's equation were about 21, 48, and 55 nm for $CdFe₂O₄$ powder calcined at 700, 800, and 900 ◦C, respectively. Fig. 3 shows the micrographs and the size of $CdFe₂O₄$ particles. It seemed that the particle sizes were about 20–60 nm. Some big particles were aggregates of small crystallites of CdFe₂O₄.

Fig. 2. XRD pattern of $CdFe₂O₄$.

Fig. 3. The TEM micrograph of the CdFe₂O₄ calcined at 700 °C.

3.2. Gas-sensing properties

To determine the optimum working temperature of these sensors, the responses are examined as a function of working temperature in 100 ppm ethanol concentration, as shown in Fig. 4. When the working temperature varies from 175 to 400 $\mathrm{^{\circ}C}$, responses increase rapidly at first, and then decrease slowly.

When sensors exposed to the air, O_2 was adsorbed on their surface. And the adsorbed oxygen would be translated into chemisorbed oxygen at a definite temperature.

 $C₂H₅OH$ gases and the chemisorbed oxygen can take place the following reaction [\[12\]:](#page--1-0)

$$
C_2H_5OH_{gas} + O_{ad}^{2-} \rightarrow C_2H_5O_{ad}^- + OH_{ad}^-
$$

$$
C_2H_5O_{ad}^- \rightarrow (C_2H_5)_2O_{ad} + O_{ad}^- + e^-
$$

$$
C_2H_5OH_{gas} + O_{ad}^{2-} + hole \rightarrow CO_2 + H_2O + V_O^-
$$

where V_O^- is a doubly charged oxygen vacancy. These reactions infuse electrons into the $CdFe₂O₄$ material, leading to an increase in electron concentration, and a decrease in resistance of the $CdFe₂O₄$ -based sensor.

The chemisorbed oxygen concentration augmented and achieved maximum value with the increasing working temperature. When the chemisorbed oxygen's absorption–desorption attained a dynamic equilibrium, the responses of sensors to ethanol gas reached the maximum at 250° C. The maximum

Fig. 4. Gas response of sensors as a function of working temperature to 100 ppm ethanol.

Download English Version:

<https://daneshyari.com/en/article/1527244>

Download Persian Version:

<https://daneshyari.com/article/1527244>

[Daneshyari.com](https://daneshyari.com)