

ScienceDirect

MATERIALS CHEMISTRY AND PHYSICS

Materials Chemistry and Physics 104 (2007) 479-482

www.elsevier.com/locate/matchemphys

# Synthesis and characterization of Cr-doped LiMn<sub>2-x</sub>Cr<sub>x</sub>O<sub>4</sub> (x = 0.1-0.4) cathode for Li-ion battery

K. Suryakala, G. Paruthimal Kalaignan\*, T. Vasudevan

Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamilnadu, India Received 31 May 2006; received in revised form 3 March 2007; accepted 8 April 2007

#### **Abstract**

 ${\rm LiMn_{2-x}Cr_xO_4}$  cathode materials were prepared by sol–gel method. The structure and electrochemical properties of  ${\rm LiMn_{2-x}Cr_xO_4}$  (x = 0.1, 0.2, 0.3 and 0.4) cathode materials for lithium ion batteries were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), cyclic voltammetry and galvanostatic charge–discharge tests. The cathodes with different Cr in contents  ${\rm LiMn_{2-x}Cr_xO_4}$  (x = 0.1, 0.2, 0.3 and 0.4) were synthesized and showed a single-phase spinel structure without any impurity. The amount of Cr has a large consequence on the electrochemical characteristics. The total discharge capacities were increased with the Cr content and all of them have good cycle stability.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Lithium-ion batteries; Cathode; Cr doping; Sol-gel method; XRD; TEM

#### 1. Introduction

Lithium rechargeable batteries offer the highest energy density of all rechargeable battery systems [1] and give various applications ranging in size from portable electronic devices to zero emission vehicles (ZEV) [1,2]. The requirements for advanced lithium rechargeable batteries include high energy and power density, reversibility and cyclability, safety, limited environmental impact and low cost [1,2]. Improved performance is achieved with new or improved anodes, electrolytes or cathodes [1-4]. Three classes of materials LiCoO2, LiNiO2 and LiMn<sub>2</sub>O<sub>4</sub> compounds have been developed as cathode materials for Li-ion batteries. LiMn<sub>2</sub>O<sub>4</sub> is a very promising cathode material with economical and environmental advantages over the layered compounds such as LiCoO<sub>2</sub> and LiNiO<sub>2</sub>. Especially, the good thermal stability of LiMn<sub>2</sub>O<sub>4</sub> is a positive factor for its use in batteries for electric vehicles [5]. However, LiMn<sub>2</sub>O<sub>4</sub> shows severe capacity fading with cycling at room and high temperatures. It was reported that the capacity fading mechanism at room temperature was related to the Jahn-Teller distortion caused by Mn<sup>3+</sup> Jahn–Teller ions [6]. The cycling performance of LiMn<sub>2</sub>O<sub>4</sub> at room temperature was enhanced by the partial substitution of Mn in LiMn<sub>2</sub>O<sub>4</sub> with transition metals (Co, Cr, Ni, Fe, Ti and Zn) [7–12]. The poor cycling behaviour can be improved by cation and anion substitution, and also surface passivation treatment of LiMn<sub>2</sub>O<sub>4</sub> [13–15].

Now, partial substitution of manganese, with other metal elements into  $\text{LiM}_x \text{Mn}_{2-x} \text{O}_4$  (M = Co, Mg, Cr, Ni, Fe, Al, Ti and Zn) has been suggested [16–19]. In the case of small amount of substitution, the dopant reduces the initial capacity at the 4 V plateau slightly, but improves the cycle-life of the spinel greatly. An extensive amount of substitution shows a significant decrease in capacity at the 4 V plateau [20]. In this present work, the spinel  $\text{LiMn}_{2-x}\text{Cr}_x\text{O}_4$  has been prepared via a sol–gel method. The structure and morphologies of the products have been investigated. Via a serial of electrochemical tests, the electrochemical characteristics of the spinel  $\text{LiMn}_{2-x}\text{Cr}_x\text{O}_4$  with different Cr contents are discussed in detail.

#### 2. Experimental

Cr-doped LiMn<sub>2-x</sub>Cr<sub>x</sub>O<sub>4</sub> [x=0.1, 0.2, 0.3 and 0.4] spinel cathode material for lithium ion batteries was prepared by sol–gel method. The solution for sol–gel method was obtained by dissolving stoichiometric ratios of (CH<sub>3</sub>COO)<sub>2</sub>Mn·4H<sub>2</sub>O, LiNO<sub>3</sub>·3H<sub>2</sub>O and Cr(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O (99%) in distilled water and mixed well with citric acid [C(OH)(COOH)(CH<sub>2</sub>COOH)<sub>2</sub>] in distilled water. The resulting precursor solution was evaporated at 80 °C under constant stirring for 6 h. The evaporation increases the viscosity of the solution and further heating leads to the formation of polymeric resin. Thus, prepared

<sup>\*</sup> Corresponding author. Tel.: +91 4565 228836; fax: +91 4565 225202. E-mail address: kalaignan@yahoo.com (G.P. Kalaignan).

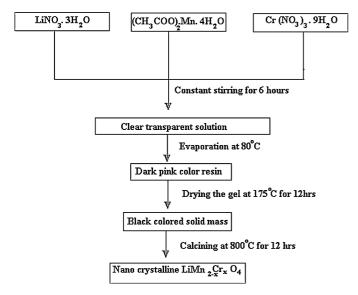



Fig. 1. Schematic representation for the preparation of nanocrystalline  $\text{LiMn}_{2-x}\text{Cr}_x\text{O}_4$ .

polymeric resin was further heated at 175 °C for 12 h to set polymeric intermediates with solid mass nature. It was calcined at 800 °C for 10 h, the polymeric intermediates caused the decomposition of organic derivatives due to the combustion and led to the formation of nano crystalline  $\text{LiMn}_{2-x}\text{Cr}_x\text{O}_4$  powder by citric acid through sol–gel route as given in Fig. 1.

Synthesis of LiMn $_{2-x}$ Cr $_x$ O $_4$  powder by citric acid assisted sol–gel route was investigated through XRD (JOEL model JDX 8030 X-ray diffractometer using Cu K $\alpha$  radiation), Scanning Electron Microscope (Philips scanning electron microscopy) and transmission electron microscope (TEM, JEM–2010) to identify the structural co-ordination and crystalline phase.

The electrochemical performance of the as-prepared powder electrodes was estimated using two-electrode coin type cell (2032) with lithium foil as the reference electrode. All testing electrodes were prepared by coating the slurry of a mixture (composed of 80 wt% active cathode powders, 10 wt % conducting agent (acetylene black) and 10 wt% binders (polyvinylidene fluoride) onto a copper foil current collector. After drying in air at 80 °C for 4 h, the electrodes were pressed under 20 MPa for 1 min, and then dried at 120  $^{\circ}$ C for 24 h in a vacuum drier. The weight of the active materials in the electrode sheet was  $10 \,\mathrm{mg}\,\mathrm{cm}^{-2}$ . The cells were assembled in Argon filled glove box. The electrolyte was 1 M LiClO<sub>4</sub> in the mixture of ethylene carbonate (EC) and propylene carbonate (PC) with mass ratio being 1:1. A polypropylene (PP) film (Cellgard 2300) was used as the separator. Galvanostatic charge-discharge tests were conducted on a WPG instrument, South Korea battery program-control test system with the cut-off voltages of 3 and 5 V (versus Li/Li+) under a specific current density (a nominal specific capacity of 120 mAh g<sup>-1</sup> was assumed to convert the current density into charge rate). The cyclic voltammogram (CV) test was performed on EG&G PARC model 6310, Electrochemical Impedance Analyzer coupled with M398 software at room temperature with a scan rate of 0.1 mV s<sup>-1</sup>.

#### 3. Results and discussions

#### 3.1. X-ray diffraction

Fig. 2 shows the XRD patterns of LiMn<sub>2-x</sub>Cr<sub>x</sub>O<sub>4</sub> powders. The crystal phase of all the samples are identified from the XRD data to be an ordered spinel structure indexed by cubic Fd-3m and no other minor products are detected. This fact indicates that the Mn site in LiMn<sub>2</sub>O<sub>4</sub> is completely substituted by Cr doing. For LiMn<sub>1.9</sub>Cr<sub>0.1</sub>O<sub>4</sub> the lattice parameter and unit cell volume are a = 8.2163 Å and V = 554.663 Å, respectively. With increasing the amount of Cr the lattice parameter decreases gradually.

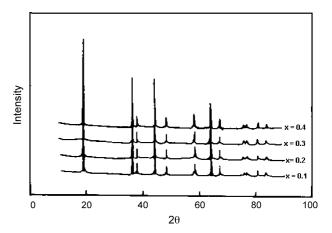
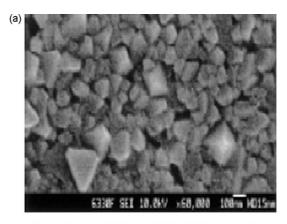




Fig. 2. X-ray diffraction pattern of  $LiMn_{2-x}Cr_xO_4$  powder.

When the Cr content reaches 0.4, the lattice parameter is only  $8.1679 \, \text{Å}$ . This decrease is due to the increase in the concentration of  $\text{Mn}^{4+}$  ions in the spinel structure as  $\text{Mn}^{3+}$  ions are substituted by  $\text{Cr}^{3+}$  ions.

#### 3.2. SEM and TEM

All the samples were synthesized under the same processing conditions as described in Section 2 by only changing the stoichiometric compositions of the corresponding starting materials.



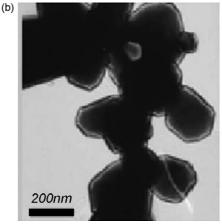



Fig. 3. Images of  $LiMn_{2-x}Cu_xO_4$  powders prepared by citric acid assisted sol-gel method: (a) SEM and (b) TEM.

### Download English Version:

## https://daneshyari.com/en/article/1527305

Download Persian Version:

https://daneshyari.com/article/1527305

Daneshyari.com